Xiaohua Zhang

Staff Scientist
Biosciences and Biotechnology Division
Email: zhang30@llnl.gov
Phone: +19254222414

Education

Ph.D.: Computational Chemistry - University of California, Santa Barbara - 2007

Research

I develop novel applications of theoretical/computational chemistry methods and engineer software to implement these methods. My research interests include: (i) drug discovery and high-throughput drug screening C++ toolkit development; (ii) fragment- and structure-based drug design; (iii) high performance computing applied to computational chemistry; (iv) algorithm derivation and program engineering for molecular simulation.

Programs/software

VinaLC

ConveyorLC

Publications

  1. Jonathan P. Cranford, Thomas J. O’Hara, Christopher T. Villongco, Omar M. Hafez, Robert C. Blake, Joseph Loscalzo, Jean–Luc Fattebert, David F. Richards, Xiaohua Zhang, James N. Glosli, Andrew D. McCulloch, David E. Krummen, Felice C. Lightstone, and Sergio E. Wong. (2018) Efficient computational modeling of human ventricular activation and its electrocardiographic representation: A sensitivity study. Cardiovascular Engineering and Technology, 9, 447–467.
  2. X. Zhang, H. Péréz-Sánchez, and F. C. Lightstone. (2017) A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding AntithrombinCurrent Topics in Medicinal Chemistry, 17, 1-9.
  3. X. Zhang, H. Péréz-Sánchez, and F. C. Lightstone. (2015) Molecular Dynamics Simulations of Ligand Recognition Upon Binding Antithrombin: A MM/GBSA ApproachBioinformatics and Biomedical Engineering, 9044, 584-593.
  4. M. X. LaBute, X. Zhang, J. Lenderman, B. J. Bennion, S. E. Wong, F. C. Lightstone (2014) Adverse Drug Reaction Prediction Using Scores Produced by Large-Scale Drug-Protein Target Docking on High-Performance Computing MachinesPLoS ONE, 9(9): e106298.
  5. X. Zhang, S. E. Wong, F. C. Lightstone (2014) Toward Fully Automated High Performance Computing Drug Discovery: A Massively Parallel Virtual Screening Pipeline for Docking and Molecular Mechanics/Generalized Born Surface Area Rescoring to Improve EnrichmentJ. Chem. Inf. Model., 54(1) 324-337.
  6. X. Zhang, S. E. Wong, F. C. Lightstone (2013) Message Passing Interface and Multithreading Hybrid for Parallel Molecular Docking of Large Databases on Petascale High Performance Computing MachinesJ. Comput. Chem., 34, 915-927.
  7. R. Custelcean, P. V. Bonnesen, N. C. Duncan, X. Zhang, L. A. Watson, G. Van Berkel, W. B. Parson, and B. P. Hay. (2012) Urea-Functionalized M4L6 Cage Receptors: Anion-Templated Self-Assembly and Selective Guest Exchange in Aqueous SolutionsJ. Am. Chem. Soc. 134, 8525-8534.
  8. J. Nadas, X. Zhang, and B. P. Hay. (2011) Shapes of Sulfur, Oxygen, and Nitrogen MustardsJ. Phys. Chem. A 115, 6709-6716.
  9. X. Zhang, A. C. Gibbs, C. H. Reynolds, M. B. Peters, and L. M. Westerhoff. (2010) Quantum Mechanical Pairwise Decomposition Analysis of Protein Kinase B Inhibitors: Validating a New Tool for Guiding Drug DesignJ. Chem. Inf. Model. 50, 651-661.
  10. D. J. Diller, C. Humblet, X. Zhang, and L. M. Westerhoff. (2010) Computational alanine scanning with linear scaling semiempirical quantum mechanical methodsProteins-Struct. Funct. Bioinf. 78, 2329-2337.
  11. X. Zhang, and T. C. Bruice. (2008) Complexation of single strand telomere and telomerase RNA template polyanions by deoxyribonucleic guanidine (DNG) polycations: Plausible anticancer agentsBiorg. Med. Chem. Lett. 18, 665-669.
  12. X. Zhang, and T. C. Bruice. (2007) Diels-Alder ribozyme catalysis: A computational approachJ. Am. Chem. Soc. 129, 1001-1007.
  13. X. Zhang, and T. C. Bruice. (2007) Temperature-dependent structure of the ES complex of Bacillus stearothermophilus alcohol dehydrogenaseBiochemistry. 46, 837-843.
  14. X. Zhang, and T. C. Bruice. (2006) Temperature dependence of the structure of the substrate and active site of the Thermus thermophilus chorismate mutase ES complexBiochemistry. 45, 8562-8567.
  15. X. Zhang, and T. C. Bruice. (2005) The proficiency of a thermophilic chorismate mutase enzyme is solely through an entropic advantage in the enzyme reactionProc. Natl. Acad. Sci. U. S. A. 102, 18356-18360
  16. X. D. Zhang, X. Zhang, and T. C. Bruice. (2005) A definitive mechanism for chorismate mutaseBiochemistry. 44, 10443-10448.
  17. D. F. Liu, A. B. Seuthe, O. T. Ehrler, X. Zhang, T. Wyttenbach, J. F. Hsu, and M. T. Bowers. (2005) Oxytocin-receptor binding: Why divalent metals are essentialJ. Am. Chem. Soc. 127, 2024-2025.