Dino Wu


Portrait of  Dino Wu
  • Title
    Post-doctoral Researcher
  • Email
  • Phone
    (925) 423-2687
  • Organization


Ziheng “Dino” Wu is a post-doctoral researcher at the Materials Engineering Division at Lawrence Livermore National Laboratory (LLNL). Wu focuses on advancing multi-materials metal powder additive manufacturing (AM) and developing a particle dynamics model to understand the powder movements inside electric fields. Additionally, Wu is developing workflow to detect defect formation on a part-scale using in-situ sensing and identify the correlations between defects and part performance in laser powder bed fusion processes. Wu’s research interests are in the board area of microstructural evolution and mechanical properties of structural metals, synchrotron x-ray in-situ characterization of laser-metal interactions, data analytics, and discrete element modeling.


Prior to joining LLNL, Wu obtained his Ph.D. from the Materials Science and Engineering department at Carnegie Mellon University. His graduate research focused on exploring the capabilities of powder-bed metal AM, studying the porosity formation mechanism in AM and using modeling techniques to understand the thermal history and the microstructure evolution in AM parts. He also has experience on AM fabrication using non-spherical powder, e.g., Hydride-DeHydride (HDH) Ti-6Al-4V materials. He earned his bachelor’s degree in Materials Science and Engineering from Purdue University in 2015 and master’s degree in Materials Science and Engineering from Carnegie Mellon in 2017.



Ph.D. Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania

M.S. Materials Science, Carnegie Mellon University, Pittsburgh, Pennsylvania

B.S. Materials Science Engineering, Purdue University, West Lafayette, Indiana

Z. Wu1, A. E. Wilson-Heid1, R. Griffiths1, & E. S. Elton1 (2023) “A review on experimentally observed mechanical and microstructural characteristics of interfaces in multi-material laser powder bed fusion”, Frontiers in Mechanical Engineering 9, 1087021

M. Asherloo, Z. Wu, JEC. Sabisch, I. Ghamarian, A.D. Rollett, A. Mostafaei (2023) “Variant selection in laser powder bed fusion of non-spherical Ti-6Al-4V powder”, Journal of Materials Science & Technology 147, 56-67


M. Asherloo, J. Hwang, R. Leroux, Z. Wu, M. Paliwal, A. D. Rollett, A. Mostafaei “Understanding process-microstructure-property relationships in laser powder bed fusion of non-spherical Ti-6Al-4V powder”. Materials Characterization 198, 112757

T. Ziev, E. Rasouli, I. Tano, Z. Wu, S. R. Yarasi, N. Lamprinakos, V. Narayanan, A. D. Rollett, P. Vaishnav (2023) “Cost of using laser powder bed fusion to fabricate a molten salt-to-supercritical carbon dioxide heat exchanger for concentrating solar power.” 3D Printing and Additive Manufacturing.

Z. Wu1, G. Tang, S. J Clark, A. Meshkov, S. Roychowdhury, B. Gould, V. Ostroverkhov, T. Adcock, S. J Duclos, K. Fezzaa, C. Immer, A. D. Rollett (2023) “High frequency beam oscillation keyhole dynamics in laser melting revealed by in-situ x-ray imaging” Communications Materials, 4(1), 5.

E.S. Elton, Z. Wu, M. Troksa, G. Guss (2023) “Electrostatic powder spreading for metal powder bed fusion applications” Additive Manufacturing 61, 103330.

M. Asherloo, Z. Wu, M. Heim, D. Nelson, M. Paliwal, A. D. Rollett, & A. Mostafaei (2022). “Fatigue performance of laser powder bed fusion hydride-dehydride Ti-6Al-4V powder”. Additive Manufacturing, 59, 103117

Z. Wu1, S. R. Yarasi, J. Seo, N. Lamprinakos, and A. D. Rollett. (2022) "Study of the Printability, Microstructures, and Mechanical Performances of Laser Powder Bed Fusion Built Haynes 230." Metals 12, no. 8, 1380.

M. Asherloo, Z. Wu1, M.H. Delpazir, E. Ghebreiesus, S. Fryzlewicz, R. Jiang, B. Gould, M. Heim, M. Nelson, M. Marruci, M. Paliwal, A.D. Rollett, A. Mostafaei (2022) “Laser-beam powder bed fusion of cost-effective non-spherical hydride-dehydride Ti-6Al-4V alloy”, Additive Manufacturing 56, 102875.

H. Wang, B. Gould, M. Haddad, Z. Wu, & S. J. Wolff (2022). “In situ X-ray imaging of directed energy deposition of metals: The comparisons of delivery performance between spherical and irregular powders”. Journal of Manufacturing Processes, 79, 11-18

IN. Tano, E. Rasouli, T Ziev, Z Wu, N. Lamprinakos, J. Seo, L.S. Balhorn, P. Vaishnav, A.D. Rollett, V. Narayanan (2022) “An Additively-manufactured Molten Salt-to-supercritical Carbon Di-oxide Primary Heat Exchanger for Solar Thermal Power Generation – Design and Techno-economic Performance”, Solar Energy, 234, 152-169

A. Mostafaei, C. Zhao, Y. He, S. Ghiaasiaan, B. Shi, S. Shao, N. Shamsaei, Z. Wu, N. Kouraytem, T. Sun, J. Pauza, J. Gordon, B. Webler, N. Parab, M. Asherloo, Q. Guo, L. Chen, A. Rollett (2022) “Defects and Anomalies in Powder Bed Fusion Metal Additive Manufacturing”, Current Opinion in Solid State and Materials Science, 100974

Z. Wu1, M. Asherloo, R. Jiang, M. Delpazir, N. Sivakumar, J. Capone, B. Gould, A. Rollett & A. Mostafaei (2021) “Study of Printability and Porosity Formation in Laser Powder Bed Fusion Built Hydride-Dehydride (HDH) Ti-6Al-4V”, Additive Manufacturing, 47, 102323.

S. Wolff, H. Wang, B, Gould, N. Parab, Z. Wu, C. Zhao, A. Greco, T. Sun (2021) “In Situ X-ray Imaging of Pore Formation Mechanisms and Dynamics in Laser Powder-Blown Directed Energy Deposition Additive Manufacturing”, International Journal of Machine Tools and Manufacture, 103743

D. Basu1, Z. Wu1, E. Larson, J. Meyer, R. Kuo, A. Rollett (2021) “Entrapped Gas and Process parameter Induced Porosity Formation in Additively Manufactured 17-4 PH Stainless Steel”, Journal of Materials Engineering and Performance, 1-8

N. Kouraytem, P. Chiang, R. Jiang, C. Kantzos, J. Pauza, R. Cunningham, Z. Wu, G. Tang, N. Parab, C. Zhao, K. Fezzaa, T. Sun, A. Rollett, (2021) “Solidification Crack Propagation and Morphology Dependence on Processing Parameters in AA6061 from Ultra-high-speed X-ray Visualization”, Additive Manufacturing, 101959

Z. Wu1, D. Basu1, J. Meyer, E. Larson, R. Kuo, J. Beuth, & A. Rollett, (2020) ”Study of Powder Gas Entrapment and Its Effects on Porosity in 17-4 PH Stainless Steel Parts Fabricated in Laser Powder Bed Fusion”, JOM 73, 177 - 188

Z. Wu1, S.P. Narra, & A.D. Rollett, (2020) “Exploring The Fabrication Limits of Thin-wall Structures in A Laser Powder Bed Fusion Process”, The International Journal of Advanced Manufacturing Technology, 110, 191 – 207.

S.P. Narra1, Z. Wu1, R. Patel, J. Capone, M. Paliwal, J. Beuth, & A.D. Rollett, (2020) “Use of Non-Spherical Hydride-Dehyride (HDH) Powder in Powder Bed Fusion Additive Manufacturing”, Additive Manufacturing, 34, 101188.

R. Jiang, A. Mostafaei, Z. Wu, A. Choi, P.W. Guan, M. Chmielus, & A.D. Rollett, (2020) “Effect of Heat Treatment on Microstructural Evolution and Hardness Homogeneity in Laser Powder Bed Fusion of Alloy 718”, Additive Manufacturing, 35, 101282.

Z. Wu1, S. Rao Yarasi, A. Mostafaei, A.D. Rollett, (2020) “Powder Characterization for Metal Additive Manufacturing”, ASM Handbook, Volume 24, Additive Manufacturing Processes, Ed. D. Bourell, W. Frazier, H. Kuhn, M. Seifi, ASM International


Y. Lin, Y. Zheng, Z. Wu, and W.M. Garrison, (2019) “Discussion of the Effects of Composition and Heat Treatment on the Toughness of Medium Carbon Secondary Hardening Steels”, Materials Science & Engineering: A, 748, 213 - 227