Fred Streitz

Chief Computational Scientist & HPC Innovation Center Director
Phone: +19254233236

Chief Computational Scientist
Director, HPC Innovation Center

Personal Background

Fred Streitz is Chief Computational Scientist at Lawrence Livermore National Laboratory (LLNL) and Director of the High Performance Computing Innovation Center (HPCIC). He develops strategies and leads efforts to address the nation’s forefront scientific problems through the application of supercomputing and guides LLNL’s efforts to form strategic industrial, academic and government collaborations that support and expand HPC capability at the Lab.

Fred serves on advisory boards for Argonne and Oak Ridge National Labs and as a Subject Editor for the International Journal of High Performance Computing Applications, in addition to participation in the Advanced Computing Round Table at the Council on Competitiveness. He is a Fellow of the American Physical Society, a two-time winner of the IEEE Gordon Bell Prize, and the recipient of a Special Recognition Award from the U.S. Secretary of Energy.

Dr. Streitz earned a B.S. in Physics from Harvey Mudd College in Claremont, California and a Ph.D. in Physics from the Johns Hopkins University in Baltimore, Maryland. He is currently an adjunct Professor at Georgetown University.

Prior to joining Lawrence Livermore National Laboratory in the Physical and Life Sciences Directorate in 1999, Fred held positions as a National Research Council Fellow at the Naval Research Laboratory and an Assistant Professor at Auburn University.

Selected Publications

  1. F. Graziani et. al., “Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project,” High Energy Density Physics, 8, 105 (2012)
  2. J. Dongarra et. al., "The International Exascale Software Project Roadmap," International Journal of High Performance Computing Applications 25, 3 (2011)
  3. S. Ashby et. al., “The Opportunities and Challenges of Exascale Computing,” Summary Report of the Advanced Scientific Computing Advisory (ASCAC) Subcommitee, US Department of Energy (2010)
  4. B.R. de Supinski et al., “BlueGene/L applications: Parallelism On a Massive Scale,” International Journal of High Performance Computing Applications, Vol. 22, 33 (2008)
  5. J. N. Glosli, F. R. Graziani, R. M. More, M. S. Murillo, F. H. Streitz, M. P. Surh, L. X. Benedict, S. Hau-Riege, A. B. Langdon, and R. A. London, “Molecular Dynamics Simulations of Temperature Equilibration in Dense Hydrogen,” Phys. Rev. E 78, 025401 (2008)
  6. J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards, R. E. Rudd, and F. H. Streitz, “Extending Stability Beyond CPU Millennium: A Micron-Scale Atomistic Simulation of Kelvin–Helmholtz Instability,” Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, 2007
  7. F.H. Streitz, J.N. Glosli, M.V. Patel, Bor Chan, R.K. Yates, B.R. de Supinski, J. Sexton, J.A. Gunnels, “Simulating solidification in metals at high pressure: the drive to petascale computing,” J. of Physics: Conf. Series, 46, 254, (2006)
  8. J.A Moriarty, L.X. Benedict, J.N. Glosli, R.Q. Hood, D.A. Orlikowski, M.V. Patel, P. Soderlind, F.H. Streitz, M. Tang, L.H. Yang, “Robust quantum-based interatomic potentials for multiscale modeling in transition metals.” J. Mat. Res. 21, 563 (2006)
  9. J.H. Nguyen, D. Orlikowski, F.H. Streitz, J.A. Moriarty and N. C. Holmes, “High-pressure tailored compression: Controlled thermodynamic paths,” J. Appl. Phys. 100, 023508 (2006).
  10. F.H. Streitz, J.N. Glosli and M.V. Patel, “Beyond finite size scaling in solidification simulations,” Phys. Rev. Letters, 96, 225701 (2006).
  11. L.X. Benedict, J.E. Klepeis, and F.H. Streitz, “Calculation of optical absorption in Al across the solid-to-liquid transition,” Phys. Rev. B, 71, 064103 (2005).
  12. J.A. Moriarty, J.F. Belak, R.E. Rudd, P. Soderlind, F.H. Streitz, L.H. Yang, "Quantum based atomistic simulation of materials properties in transition metals," J. Phys: Condens. Matter 14, 2825 (2002)
  13. F. H. Streitz and J. W. Mintmire, “Electrostatic potentials for metal oxide surfaces and interfaces,” Phys. Rev. B 50, 11996 (1994)
  14. F. H. Streitz, R. C. Cammarata, and K. Sieradzki, “Surface stress effects on elastic properties II: Metallic multilayers,” Phys. Rev. B 49, 16707 (1994)
  15. F. H. Streitz, R. C. Cammarata, and K. Sieradzki, “Surface stress effects on elastic properties I: Thin metal films,” Phys. Rev. B 49, 16699 (1994)
  16. Gang Xiao, M. Z. Cieplak, D. Musser, A. Gavrin, F. H. Streitz, C. L. Chien, J. J. Rhyne, and J. A. Gotaas, “Significance of plane versus chain sites in high Tc oxide superconductor,” Nature (London) 332, 238 (1988)
  17. F. H. Streitz, M. Z. Cieplak, gang Xiao, A. Gavrin, A. Bakhshai, and C. L. Chien, “Superconducting Au-YBa2Cu3O7 composites,” Appl. Phys. Lett. 52, 927 (1988)
  18. Gang Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, and C. L. Chien, “High temperature superconductivity in tetragonal perovskite structure: is oxygen vacancy order important?” Phys. Rev. Lett. 60, 1446 (1988)