Younggil Song

(he/him)

Portrait of  Younggil Song
  • Title
    Postdoctoral Research staff
  • Email
    song20@llnl.gov
  • Phone
    (925) 422-7041
  • Organization
    Not Available

Research interests

Dr. Song uses various numerical methods (including the phase-field model) and theoretical approaches to investigate microstructure evolutions and thermo-chemical transport mechanisms. His simulations are associated with atomistic simulations and those quantitative numerical results are compared to experimental measurements. In order to enhance numerical efficiencies, Dr. Song develops codes to use multiple CPUs and GPUs simultaneously.

  • Solidification microstructure pattern formations and dynamics
  • Phase transition dynamics of various physical systems
  • Heat transfer mechanisms within polycrystalline microstructures
  • Reaction-diffusion dynamics within various systems
  • Morphology evolutions within battery systems

Ph.D., Physics, Northeastern University, Boston, MA, US, 2017

B.S., Physics, Konkuk University, Seoul, South Korea, 2010

Selected publications

1. Y. Song, F.L. Mota, D. Tourret, K. Ji, B. Billia, R. Trivedi, N. Bergeon, and A. Karma, “Cell invasion during competitive growth of polycrystalline solidification patterns”, Nature Communications 14, 2244 (2023). (DOI: https://doi.org/10.1038/s41467-023-37458-0)

2. Y. Song, D. Tourret, and A. Karma, “Scaling laws for two-dimensional dendritic crystal growth in a narrow channel”, Physical Review E 107, L052801 (2023). (DOI: https://doi.org/10.1103/PhysRevE.107.L052801)

3. Y. Song, B. Radhakrishnan, S. Gorti, and R. Acharya, “Precipitate growth kinetics under inhomogeneous concentration fields using a phase-field model”, Physical Review Materials, 5, 053401 (2021). (DOI: https://doi.org/10.1103/PhysRevMaterials.5.053401)

4. Y. Song, D. Tourret, F.L. Mota, J. Pereda, B. Billia, N. Bergeon, R. Trivedi, and A. Karma, “Thermal-field effects on interface dynamics and microstructure selection during alloy directional solidification”, Acta Materialia, 150, 139-152 (2018). (DOI: http://doi.org/10.1016/j.actamat.2018.03.012)

5. Y. Song, S. Akamatsu, S. Bottin-Rousseau, and A. Karma, “Propagative selection of tilted array patterns in directional solidification”, Physical Reivew Materials, 2, 053403 (2018). (DOI: https://doi.org/10.1103/PhysRevMaterials.2.053403)

6. A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, K. Fezzaa, and A. Karma, “Microstructure selection in thin-sample directional solidification of an Al-Cu alloy: In situ X-ray imaging and phase-field simulations”, Acta Materialia, 129, 203-216 (2017). (DOI: http://doi.org/10.1016/j.actamat.2017.02/047)

7. D. Tourret, Y. Song, A.J. Clarke, and A. Karma, “Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study”, 122, 220-235 (2017). (DOI: http://doi.org/10.1016/j.actamat.2016.9.055)

 

Software

1. S. DeWitt, P. Fackler, Y. Song, B. Radhakrishnan, and S. Gorti. MEUMAPPS (C++ Version). Computer Software. https://code.ornl.gov/meumapps/meumapps. USDOE National Nuclear Security Administration (NNSA), USDOE Office of Science (SC). 14 Jan. 2022. Web. doi:10.11578/dc.20220114.1.

2. B. Radhakrishnan, S.B. Gorti, Y. Song, and USDOE, MEUMAPPS (Microstructure Evolution Using Massively Parallel Phase-field Simulations), Computer software, https://www.osti.gov/servlets/purl/1645473, USDOE, May 2020. Web. doi:10.11578/dc.20201001.96.

 

For a full list, see:

Google Scholar: https://scholar.google.com/citations?user=cH618OIAAAAJ&hl=en&oi=ao

Scopus: 57790870000

ORCID: 0000-0002-1137-8151 (Link: https://orcid.org/0000-0002-1137-8151)

Memberships

APS Physics, TMS, and MRS

Social media

LinkedIn: https://www.linkedin.com/in/091song

ResearchGate: https://www.researchgate.net/profile/Younggil-Song

Hobbies

Scuba diving and snowboarding