Dave Schlossberg

Portrait of  Dave Schlossberg

  • Title
    Experimental Physicist
  • Email
    schlossberg1@llnl.gov
  • Phone
    (925) 422-8573
  • Organization
    Not Available

Dave Schlossberg is passionate about applying new techniques to understand complex physical phenomena. He’s achieved this primarily in the areas of plasma physics and astrophysics, with published results spanning a range of 1011 in density and 1010 in time. He is now an Experimental Physicist at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory.

After graduating from Swarthmore College, Schlossberg worked at NASA’s Goddard Space Flight Center in Greenbelt, MD, where he developed, analyzed, and flight-tested optical and near infrared detectors for the Hubble Space Telescope. These detectors were launched and installed in the Hubble in 2009, and now operate as the Wide Field Camera 3. He subsequently began his doctoral work in thermonuclear fusion, specializing in Magnetic Confinement Fusion. He developed and used new diagnostics at General Atomics’ DIII-D National Fusion Facility to relate the LH-power threshold’s input torque-dependence to observed changes in the density turbulence spectrum. He also developed a novel Thomson scattering system for the Pegasus Toroidal Experiment, and used those new measurements to guide the plasma to world-record beta-toroidal values.

Joining LLNL in 2017, Schlossberg continues his dual interests of diagnostics and understanding physical phenomena as part of the Implosions and Stagnation group. His current research involves using signatures from nuclear diagnostics to understand performance degradations caused by low-mode drive asymmetries in Inertial Confinement Fusion. In addition, he is developing next-generation nuclear diagnostics as NIF moves into a new burning plasma regime. Dave is also passionate about mentorship and science outreach.

Ph.D., Nuclear Engineering & Engineering Physics, University of Wisconsin – Madison

M.S., Nuclear Engineering & Engineering Physics, University of Wisconsin - Madison

B.A., Physics, Swarthmore College

D.J. Schlossberg, G.P. Grim, D.T. Casey, A.S. Moore, R. Nora, B. Bachmann, L.R. Benedetti, R.M. Bionta, M.J. Eckart, J.E. Field, D.N. Fittinghoff, M. Gatu Johnson, V. Geppert-Kleinrath, E.P. Hartouni, R. Hatarik, W.W. Hsing, L.C. Jarrott, S.F. Khan, J.D. Kilkenny, O.L. Landen, B.J. MacGowan, K.D. Meaney, D.H. Munro, S.R. Nagel, A. Pak, P.K. Patel, B.K. Spears, P.L. Volegov, Effects of drive asymmetry on hot-spot flow dynamics and implosion performance on the NIF, Phys. Rev. Lett. 127, 125001 (2021). https://doi.org/10.1103/PhysRevLett.127.125001

D.J. Schlossberg, R.M. Bionta, D.T. Casey, M.J. Eckart, D.N. Fittinghoff, V. Geppert-Kleinrath, G.P. Grim, K.D. Hahn, E.P. Hartouni, J. Jeet, S.M. Kerr, A.J. Mackinnon, A.S. Moore, and P.L. Volegov, Three-dimensional diagnostics and measurements of inertial confinement fusion plasmas, Rev. Sci. Instrum. 92, 053526 (2021). https://doi.org/10.1063/5.0043853

D.T. Casey, B.J. MacGowan, J.D. Sater, A.B. Zylstra, O.L. Landen, J. Milovich, O.A. Hurricane, A.L. Kritcher, M. Hohenberger, K. Baker, S. Le Pape, T. Döppner, C. Weber, H. Huang, C. Kong, J. Biener, C.V. Young, S. Haan, R.C. Nora, S. Ross, H. Robey, M. Stadermann, A. Nikroo, D.A. Callahan, R.M. Bionta, K.D. Hahn, A.S. Moore, D. Schlossberg, M. Bruhn, K. Sequoia, N. Rice, M. Farrell, and C. Wild, Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility, Phys. Rev. Lett. 126, 025002 (2021). https://doi.org/10.1103/PhysRevLett.126.025002

Y. Ping, P. Amendt, K. Baker, V.A. Smalyuk, H. Chen, S. Khan, E.P. Hartouni, D. Ho, O. Jones, O.N. Landen, N. Lemos, J. Lindl, J. Moody, A. Nikroo, M. Rubery, D.J. Schlossberg, M. Stadermann, D. Strozzi, R. Tipton, B. Woodworth, P.J. Adrian, B. Lahmann, J. Frenje, R. Petrasso, C. Kong, N. Rice and C. Wild, Reaching 30% energy coupling efficiency for a high-density-carbon capsule in a gold rugby hohlraum on NIF, Nucl. Fusion 61, 086028 (2021). https://doi.org/10.1088/1741-4326/ac108d

A.G. MacPhee, D. Alessi, H. Chen, G. Cochran, M.R. Hermann, D.H. Kalantar, A.J. Kemp, S.M. Kerr, A.J. Link, T. Ma, A.J. Mackinnon, D.A. Mariscal, D. Schlossberg, R. Tommasini, S. Vonhof, C.C. Widmayer, S.C. Wilks, G.J. Williams, W.H. Williams, and K. Youngblood, Enhanced laser-plasma interactions using non-imaging optical concentrator targets, Optica 7, 129-130 (2020). https://doi.org/10.1364/OPTICA.375486

D.J. Schlossberg, A.S. Moore, B.V. Beeman, M.J. Eckart, G.P. Grim, E.P. Hartouni, R. Hatarik, M.S. Rubery, D.B. Sayre, and C. Waltz, Ab initio response functions for Cherenkov-based neutron detectors, Rev. Sci. Instrum. 89, 10I136 (2018). https://doi.org/10.1063/1.5039399

J.A. Reusch, G.M. Bodner, M.W. Bongard, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, A.T. Rhodes, N.J. Richner, C. Rodriguez Sanchez, D.J. Schlossberg, and J.D. Weberski, Non-inductively Driven Tokamak Plasmas at Near-Unity Βt in the Pegasus Toroidal Experiment, Phys. Plasmas 25, 056101 (2018). https://doi.org/10.1063/1.5017966

D.J. Schlossberg, G.M. Bodner, M.W. Bongard, M.G. Burke, R.J. Fonck, J.M. Perry, and J.A. Reusch, Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta, Phys. Rev. Lett. 119, 035001 (2017). https://doi.org/10.1103/PhysRevLett.119.035001