Arthur Rodgers

Staff Scientist
Atmospheric, Earth, and Energy Division
Phone: +19254235018


  • Ph.D., Physics, University of Colorado, Boulder, 1993
  • M.Sc., Physics, University of Colorado, Boulder, 1988
  • B.S., Physics, Northeastern University, 1986

Research Interests

Computational seismology, earthquake and explosion ground motion simulation, seismoacoustics, explosion yield estimation.

Honors and Awards

  • Incorporate Research Institutions for Seismology and Seismological Society of America Distinguished Lectureship, 2019
  • DTRA, Outstanding Team Contribution for Integrated Yield Determination Tool (IYDT), 2012
  • DTRA,Top Contributor of the Quarter, IYDT, 2011
  • PLS Directorate Award, California Academy of Sciences Earthquake Show Simulations, 2012
  • Defense Programs Award of Excellence, Source Physics Experiment, 2011
  • GS Directorate Award, IYDT Project Leadership, 2011
  • Fulbright Scholar, Laboratoire de Géophysique Interne et Tectonophysique, Grenoble, France, 2010
  • CMELS Directorate Award, 1906 San Francisco Earthquake Simulations, 2006
  • NAI Directorate Award, Middle East Seismic Cooperation Work, 2003

Selected Publications

Rodgers, A., N.A. Petersson, A. Pitarka, D. McCallen, B. Sjogreen and N. Abrahamson (2019). Broadband (0-5 Hz) Fully Deterministic Three-Dimensional Ground Motion Simulations of a Magnitude 7.0 Hayward Fault Earthquake: Comparison with Empirical Ground Motion Models and 3D Path and Site Effects from Source Normalized Intensities, Seismo. Res. Lett., 90 (3), 1268-1284. doi: 10.1785/0220180261.

Rodgers, A., A. Pitarka and D. B. McCallen (2019). The Effect of Minimum Shear Wavespeed and Fault Geometry on Three-Dimensional Ground Motion Simulations for an MW 6.5 Hayward Fault Scenario Earthquake, San Francisco Bay Area, Northern California, Bull. Seismo. Soc. Am., doi: 10.1785/0120180290.

Rodgers, A., R. Pankajakshan and B. Sjogreen (2018b). Sierra advances resolution of Hayward Fault earthquake simulations, technical report, LLNL-TR-758317.

Kim, K., A. Rodgers and M. Wright (2018). Uncertainty analysis for infrasound waveform inversion: Application to explosion yield estimation, J. Acoust. Soc. Amer., 144(6), 3351-336,

Rodgers, A. J., L. J. Hwang, and L. H. Kellogg (2018), Computational seismology workshop trains early-career scientists, Eos, 99,

Kim, K., A. Rodgers, and D. Seastrand (2018), Local Infrasound Variability Related to In Situ Atmospheric Observation, Geophysical Research Letters,

Rodgers, A. J., Pitarka, A., Petersson, N. A., Sjögreen, B., and McCallen, D. B. (2018), Broadband (0–4 Hz) ground motions for a magnitude 7.0 Hayward fault earthquake with three-dimensional structure and topography, Geophysical Research Letters 45, doi: 10.1002/2017GL076505.

Johansen, H., Rodgers, A., Petersson, N. A., McCallen, D., Sjogreen, B., and Miah, M. (2017), Toward exascale earthquake ground motion simulations for near-fault engineering analysis, Computing in Science & Engineering 19(5), 27–37, doi: 10.1109/MCSE.2017.3421558.

Kim, K. and A. Rodgers (2017), Influence of low-altitude meteorological conditions on local infrasound propagation investigated by 3-D full-waveform modeling, Geophysical Journal International 210(2), 1252–1263, doi: 10.1093/gji/ggx218.

Kim, K., and A. Rodgers (2016), Waveform inversion of acoustic waves for explosion yield estimation, Geophysical Research Letters 43, 6883–6890, doi:10.1002/2016GL069624.

Dreger, D.S., M.-H. Huang, A. Rodgers, T. Taira and K. Wooddell (2015), Kinematic Finite-Source Model for the 24 August 2014 South Napa, California, Earthquake from Joint Inversion of Seismic, GPS, and InSAR Data, Seismological Research Letters 86(2A), 327–334, doi: 10.1785/0220140244.

Pitarka, A., A. M. S. Al-Amri, M. E. Pasyanos, A. J. Rodgers, R. J. Mellors (2014), Long-Period Ground Motion in the Arabian Gulf from Earthquakes in the Zagros Mountains Thrust Belt, Pure Appl. Geophys. doi: 10.1007/s00024-0.

Ford, S. R., A. J. Rodgers, H. Xu, D. C. Templeton, P. Harben, W. Foxall and R. E. Reinke (2014), Partitioning of Seismoacoustic Energy and Estimation of Yield and Height-of-Burst/Depth-of-Burial for Near-Surface Explosions, Bull. Seismol. Soc. Am. 104, 608–623,
doi: 10.1785/0120130.

Xu, H., A. J. Rodgers, I. N. Lomov and O. Y. Vorobiev (2014), Seismic Source Characteristics of Nuclear and Chemical Explosions in Granite from Hydrodynamic Simulations, Pure Appl. Geophys. 171, 507–521, doi: 10.1007/s00024-012-0623-0.

Xu, H., A. J. Rodgers, I. N. Lomov, N. A. Petersson, B. Sjogreen and O. Y. Vorobiev (2013), Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three Dimensions, Bull. Seismol. Soc. Am. 103, 1629–1639, doi: 10.1785/0120120.

Harris, D. B., S. J. Gibbons, A. J. Rodgers and M. E. Pasyanos (2012), Nuclear Test Ban Treaty Verification Improving test ban monitoring with empirical and model-based signal processing, IEEE Signal Proc. Mag. 29, 57–70.

Aagaard, B. T., R. W. Graves, A. J. Rodgers, T. M. Brocher, R. W. Simpson, D. S. Dreger, N. A. Petersson, S. C. Larsen, S. Ma and R. C. Jachens (2010), Ground-Motion Modeling of Hayward Fault Scenario Earthquakes, Part II: Simulation of Long-Period and Broadband Ground Motions, Bull. Seismol. Soc. Am. 100, 2945–2977.

Rodgers, A. J., N. A. Petersson and B. Sjogreen (2010), Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation, J. Geophys. Res.-Sol. Ea. 115, B11309, doi: 10.1029/2010JB007707

Rodgers, A., N. A. Petersson, S. Nilsson, B. Sjogreen, K. McCandless (2008), Broadband waveform modeling of moderate earthquakes in the San Francisco Bay Area and preliminary assessment of the USGS 3D seismic velocity model, Bull. Seismol. Soc. Am. 98, 969–988,
doi: 10.1785/0120060407.

Aagaard, B. T., T. M. Brocher, D. Dolenc, D. Dreger, R. W. Graves, S. Harmsen, S. Hartzell, S. C. Larsen, K. McCandless, S. Nilsson, N. A. Petersson, A. J. Rodgers, B. Sjogreen, M. L. Zoback (2008), Ground-motion modeling of the 1906 San Francisco earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events, Bull. Seismol. Soc. Am. 98, 1012–1046, doi: 10.1785/0120060410.


Supercomputer Modeling: Earthquake Ground Motions 150 Years After the 1868 Hayward Fault Rupture , IRIS-SSA Distinguished Lecture Series, Southwest Oregon Community College, Coos Bay OR, November 8, 2019

Supercomputing modeling of earthquake ground motions 150 years after the October 21, 1868 Hayward Fault Rupture , IRIS-SSA Distinguished Lecture Series, Portland OR, February 7, 2019

"High-Performance Computing Ground Motion Simulations of Large, Damaging Hayward Fault Earthquakes" , USGS Earthquake Science Center Seminar (August 29, 2018)

"Hayward fault earthquake simulations increase fidelity of ground motions" , LLNL press release

"Computer Simulations of Earthquakes in the San Francisco Bay Area"  LLNL Science on Saturday Lecture on University of California Television

"Simulating the south Napa earthquake" , LLNL press release

"Supercomputing meets seismology in earthquake exhibit

"Re-creating the 1906 San Francisco Earthquake" , LLNL Science and Technology Review, 2006