Arben Pitarka

Portrait of  Arben Pitarka

  • Title
    Seismology Group Leader
  • Email
    pitarka1@llnl.gov
  • Phone
    (925) 424-3010
  • Organization
    Not Available

Research Interests

Computational seismology, earthquake ground motion simulation, rupture dynamics and wave propagation modeling, seismic signal processing, seismic source discrimination.

Ph.D., Seismology, Kyoto University, Japan, 1997

Ph.D., Engineering Seismology, Tirana University, Albania, 1993

M.Sc., Engineering Seismology, Tirana University, Albania, 1990

B.S., Geophysics, Strasbourg University, Strasbourg France, 1984

Pitarka, A.,R. Graves,K. Irikura, K. Miyakoshi, C. Wu, H. Kawase, A. Rodgers, and D.McCallen (2021). Refinements to the Graves-Pitarka Kinematic Rupture Generator, including a Dynamically Consistent Slip Rate Function, Applied to the 2019 M7.1 Ridgecrest earthquake, Bull. Seism. Soc. Am., 1-20, doi: 10.1785/0120210138.

Pitarka, A., A. Akinci, P. De Gori, and M. Buttinelli (2021). Deterministic 3D Ground Motion Simulations (0-5Hz) and Surface Topography Effects of the 30 October 2016 Mw 6.5 Norcia, Italy Earthquake, Bull. Seismo. Soc. Am., 1-25, doi: 10.1785/0120210133

Pitarka, A., and R. Mellors (2021). Using Dense Array Waveform Correlations to Build a Velocity Model with Stochastic Variability, Bull. Seismo. Soc. Am., 1–21, doi: 10.1785/0120200206

Pitarka, A., R. Graves, K. Irikura, K. Miyakoshi, and A. Rodgers (2020). Kinematic Rupture Modeling of Ground Motion from the M7 Kumamoto, Japan, Earthquake. Pure and Applied Geoph. Journal, 177, 2199-2221, doi:10.1007/s00024-019-02220-5.

McCallen, D.,  N. A. Petersson, A. Rodgers, A. Pitarka, M. Miah, F. Petrone, B. Sjogreen, N. Abrahamson, H.Tang (2020), EQSIM – A Computational Framework for Fault-to-Structure Earthquake Simulations on Exascale Computers Part I: Computational Models and Workflow, Earthquake Spectra, https://doi.org/10.1177/8755293020970982

McCallen, D., F. Petrone, M. Miah, A. Pitarka, A. Rodgers, N. Abrahamson (2020), EQSIM – A Multidisciplinary Framework for Fault-to-Structure Earthquake Simulations on Exascale Computers Part II: Regional Simulations of Building Response , Earthquake Spectra, https://doi.org/10.1177/8755293020970980

Rodgers, A.J., A. Pitarka, R. Pankajakshan, B. Sjögreen, and N.A. Petersson (2020). Regional-Scale Three-Dimensional Ground Motion Simulations of MW 7 Earthquakes on the Hayward Fault, Northern California Resolving Frequencies 0-10 Hz and Including Site Response Corrections, Bull. Seismo. Soc. Am., (published online 8/11/2020), doi: 10.1785/0120200147.

Scalise, M., A. Pitarka, J. N. Louie, K. D. Smith (2020), Effect of Random 3D Correlated Velocity Perturbations on Numerical Modeling of Ground Motion from the Source Physics Experiment, Bull. Seism. Soc. Am, https://doi.org/10.1785/0120200160

Rodgers, A., A. Pitarka, N. A. Petersson, B. Sjogreen, D. McCallen and N. Abrahamson (2019). Broadband (0-5 Hz) fully deterministic three-dimensional ground motion simulations of a magnitude 7.0 Hayward Fault earthquake: comparison with empirical ground motion models and 3D path and site effects from source normalized intensities, Seismo. Res. Lett., https://doi.org/10.1785/0220180261.

Mellors, R., A. Pitarka, E. Matzel, S.Magana-Zook, D. Knapp, W. Walter, T. Chen, C. Snelosn, and R. Abbott (2018). The Source Physics Experiment Large N Array, Seism. Res. Lett.,Vol 89, N5, 1618-1627, doi: 10.1785/0220180072

Rodgers, A, A. Pitarka, A. Petersson, B. Sjogreen, D. McCallen (2018). Broadband (0-4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake with 3D Structure and Topography, Geophysical Research Letters, doi: 10.1002/2017gl076505.

A. Pitarka, R. Graves, K.Irikura, H. Miyake, and A. Rodgers (2017). Performance of Irikura Recipe Rupture Model Generator in Earthquake Ground Motion Simulations with Graves and Pitarka Hybrid Approach, Pure and Applied Geophysics, 174(9), doi:10.1007/s00024-017-1504-3.

A. Pitarka, R. Gok, G. Yetirmishli, S. Ismayilova, and R. Mellors (2016). Ground Motion Modeling in the Eastern Caucasus, Pure and Applied Geophysics, 173(8), doi:10.1007/s00024-016-1311-2.

Graves, R. and A. Pitarka (2016). Kinematic Ground-Motion Simulations on Rough Faults Including Effects of 3D Stochastic Velocity Perturbations, Bulletin of the Seismological Society of America, 106(5), 2136-2153, doi:10.1785/0120160088.

Hirakawa, E., A. Pitarka, and R. Mellors (2016). Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media, Bulletin of the Seismological Society of America, 106(5), doi:10.1785/0120150243.

A. Pitarka, R. J. Mellors, W. R. Walter, S. Ezzedine, O. Vorobiev, T.Antoun, J. L. Wagoner, E. M. Matzel , S. R. Ford, A. J. Rodgers, L. Glenn, and M. Pasyanos (2015). Analysis of Ground Motion from an Underground Chemical Explosion, Bulletin of the Seismological Society of America 105(5), 2390-2410, doi: 10.1785/0120150066.

Pitarka, A., A. Al-Amri, M. Pasyanos, A. Rodgers, and R. Mellors (2014). Long-Period Ground Motion in the Arabian Gulf from Earthquakes in the Zagros Mountains Thrust Belt, Pure Appl. Geophys. 01/2014; doi:10.1007/s00024-014-0858-z.

Pitarka, A., H. K. Thio, P. Somerville, and L. F. Bonilla (2013). Broadband Ground Motion Simulation of an Intraslab Earthquake and Nonlinear Site Response: 2010 Ferndale, California, Earthquake Case Study, Seism. Res. Lett., 84, 785-795, doi:10.1785/0220130031.

Graves, R. and A. Pitarka (2015). Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method, Seism. Res. Lett., 86, doi:10.1785/0220140101.

Graves, R. A. Pitarka (2010). Broadband ground motion simulation using hybrid approach, Bulletin of Seismological Society of America. Bull. Seism. Soc. Am., 100, 5A, 2095-2123.

Ni, S., D. Helmberger, and A. Pitarka (2010). Rapid source estimation from global calibrated paths. Seism. Research. Letters, 81, 498-504.

Matsuzaki, A. Pitarka, N. Collins, R. Graves, Y. Fukushima (2010). A Characteristic Rupture Model for the 2010 Geiyo, Japan, Earthquake, PAGEOPH, doi:10.1007/s00024-010-0126-9.

Pitarka, A, L. Dalguer, S. Day, P. Somerville, and K.Dan (2009). Numerical study of ground-motion differences between buried-rupturing and surface-rupturing earthquakes. Bull. Seism. Soc. Am. 99, 1521-1537.

Song, S., A. Pitarka, and P. Somerville (2009). Exploring spatial coherence between earthquake source parameters, Bull. Seism. Soc. Am. 99, 2,564-2,571.

Mai, P.M., P. Somerville, A. Pitarka, L. Dalguer, H. Miyake, S. Song, G. Beroza, and K. Irikura (2005). On the scaling of dynamic source parameters and their relation to near-source ground motion prediction. Seismological Research Letters 76, p.261.

Pitarka,A., R.W. Graves.,and P.G. Somervile (2004), Validation of a 3D velocity model of the Puget Sound region based on modeling ground motion from the February 28,2001 Nisqually earthquake. Bull. Seism. Soc. Am. 96, 1670-1689.

Zhang, W., T. Iwata, K. Irikura, A. Pitarka, and H. Sekiguchi (2004). Dynamic rupture process of the 1999 Chi-Chi, Taiwan earthquake. Geopphys.Res.Lett. 31, L10605, doi:10.1029/2004GL01982

Pitarka, A., P.G. Somerville, Y. Fukushima, T. Uetake, K.Irikura (2000). Simulation of near-fault ground motion using hybrid Green’s functions, Bull. Seism. Soc. Am. 90, 566-586.

Pitarka, A. (1999) 3D elastic finite-difference modelling of seismic motion using staggered-grid with non-uniform spacing. Bull. Seism. Soc. Am., 89,54-68.

Pitarka, A., K. Irikura, T. Iwata and H. Sekiguchi (1998). Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake. Bull. Seism. Soc. Am., 88, 428-440.

Kamae, K, K. Irikura, and A. Pitarka (1998). A technique for simulating strong ground motion using hybrid Green’s function. Bull. Seism. Soc. Am., 88, 357-367.

Pitarka,A., K. Irikura and T. Iwata (1997). Modelling of ground motion in the Higashinada (Kobe) area for an aftershock of the 1995 January 17 Hyogo-ken nanbu, Japan, earthquake. Geophys. J. Int. 131, 231-239.

Pitarka, A., and K. Irikura (1996). Modeling 3-D surface topography by finite-difference method: the Kobe JMA station site case study, Geophys. Res. Lett. 23, 2723-2732

Pitarka, A. and K. Irikura (1996). Basin structure effects on long period strong motions in the San Fernando valley and the Los Angeles Basin from the 1994 Northridge earthquake and an aftershock Bull. Seism. Soc. Am. 86, S126-S137.

Pitarka, A., H. Takenaka, and D. Suetsugu (1994). Modeling strong motion in the Ashigara valley for the 1990 Odawara, Japan, earthquake. Bull. Seism. Soc. Am., 84, 1327-1335.