This site is currently in beta, and mobile optimization is currently not in place. Thanks for your patience as we continue to improve the user experience.

Cosmin Gheorghita Petra

Portrait of  Cosmin Gheorghita Petra

  • Title
    Computational Mathematician
  • Email
  • Phone
    (925) 424-6261
  • Organization
    Not Available

Cosmin G. Petra is a computational mathematician in the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory. Cosmin's work focuses on high-performance computing algorithms and C/C++ solvers for mathematical optimization with emphasis on applications in complex energy systems.

Prior to joining the Center for Applied Scientific Computing, Cosmin was with Argonne National Laboratory as a computational mathematician and, prior to that, hold software engineer/numerical analyst positions in IT industry. Cosmin obtained an M.S. and a Ph.D. in Applied Mathematics from the University of Maryland, Baltimore County, in 2006 and 2009, respectively.

Research appointments

  • 2016-present - Computer Scientist/Computational Mathematician, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory.
  • 2015-2020 - Adjunct Asst. Professor, School of Natural Sciences, University of California, Merced.
  • 2012-2016 - Asst. Computational Mathematician, MCS Division, Argonne National Laboratory.
  • 2009-2012 - Postdoctoral Appointee, MCS Division, Argonne National Laboratory.

Research interests

  • Scalable algorithms for optimization, control, and design under uncertainty
  • High-performance computing algorithms for mathematical optimization at extreme scale
  • Scientific computing and extreme-scale computing
  • Power grid optimization of real-world large-scale power systems

Recent and ongoing projects

  • Scalable algorithms for optimization, optimal control, and optimal design
  • HPC optimization solver for continuous optimization - HiOp
  • Optimization of power grid systems, mainly, solving real-world AC optimal power flows with contingency analysis

2006-2009 Ph.D. in Applied Mathematics - University of Maryland, Baltimore County, Baltimore, Maryland

2005-2006 M.S. in Applied Mathematics - University of Maryland, Baltimore County, Baltimore, Maryland

1998-2002 B.S. in Mathematics and Computer Science - Universitatea Babes-Bolyai, Cluj-Napoca, Romania

  • J. Wang, C. G. Petra, A nonsmooth nonconvex optimization algorithm for problems with upper-C2 objective, submitted, 2022. arXiv
  • J. J. Brust, R. F. Marcia, C. G. Petra, M. Saunders, RCR: Reduced Compact Representation for Large-scale Optimization with Linear Equality Constraints, SIAM Journal on Scientific Computing, Volume 44, Issue 1, 2022. DOI
  • C. G. Petra, M. Salazar De Troya, N. Petra, Y. Choi, G. M. Oxberry, D. Tortorelli, On the implementation of a quasi-Newton interior-point method for PDE-constrained optimization using finite element discretizations, in review, 2021.
  • C. G. Petra, I. A. Solis, Solving realistic security-constrained optimal power flow problems, submitted, 2021. arXiv
  • S. Regev, N. Chiang, E. Darve, C. G. Petra, M. A. Saunders, K. Swirydowicz, S. Peles, A Hybrid Direct-Iterative Method for Solving KKT Linear Systems, submitted, 2021.
  • J. Wang, N, Chiang, C. G. Petra, An asynchronous distributed-memory optimization solver for two-stage stochastic programming problems, 20th International Symposium on Parallel and Distributed Computing (ISPDC), 2021. DOI
  • J. J. Brust, S. Leyffer, C. G. Petra, Compact Representations of Structured BFGS Matrices, Computational Optimization and Applications, Volume 80, 2021. DOI 
  • R. Vuchkov, C. G. Petra, N. Petra, On the derivation of quasi-Newton formulas for optimization in function spaces, Journal of Numerical Functional Analysis and Optimization, Volume 41, Issue 13, 2020. DOI
  • J. J. Brust, R. F. Marcia, C. G. Petra, Computationally Efficient Decompositions of Oblique Projection Matrices, SIAM Journal on Matrix Analysis and Applications, Volume 41, Issue 2, 2020. DOI
  • E. M. Constantinescu, N. Petra, J. Bessac, C. G. Petra, Statistical Treatment of Inverse Problems Constrained by Differential Equations-Based Models with Stochastic Terms, SIAM Journal on Uncertainty Quantification, Volume 8, Issue 1, 2020. DOI
  • C. G. Petra, N. Chiang, M. Anitescu, A structured quasi-Newton algorithm for optimizing with incomplete Hessian information, SIAM Journal on Optimization, Volume 29, Issue 2, 2019. DOI
  • J. J. Brust, R. F. Marcia, C. G. Petra, Large-scale quasi-Newton trust-region methods with low dimensional linear equality constraints, Journal of Computational Optimization and Applications, Volume 74, Issue 3, 2019. DOI
  • K. Kim, C. G. Petra, V. M. Zavala, An asynchronous bundle-trust-region method for dual decomposition of stochastic mixed-integer programming, SIAM Journal on Optimization, Volume 29, Issue 1, 2019. DOI
  • C. G. Petra, F. Potra, A Homogeneous Model for Monotone Mixed Horizontal Linear Complementarity Problems, Journal of Computational Optimization and Applications, Volume 72, Issue 1, pages 241-267, 2019. DOI
  • V. Rao, K. Kim, M. Schanen, D. A. Maldonado, C. G. Petra, and M. Anitescu, A Multiperiod Optimization-Based Metric of Grid Resilience, Proceedings of the 2019 IEEE PES General Meeting, 2019.
  • C. G. Petra, A memory-distributed quasi-Newton solver for nonlinear programming problems with a small number of general constraints, Journal of Parallel and Distributed Computing, Volume 133, pages 337-348, 2019. DOI
  • M. Schanen, F. Gilbert, C. G. Petra, M. Anitescu, Towards multiperiod AC-based contingency constrained optimal power flow at large scale, “Proceedings to the 20th Power Systems Computation Conference”, 2018. DOI
  • C. G. Petra, F. Qiang, M. Lubin, J. Huchette, On efficient Hessian computation using the edge pushing algorithm in Julia, Optimization Methods and Software, Volume 33(4-6), pages 1010-1029, 2018. DOI
  • N. Petra, C. G. Petra, Z. Zhang, E. M. Constantinescu, and M. Anitescu, A Bayesian Approach for Parameter Estimation with Uncertainty for Dynamic Power Systems, IEEE Transactions on Power Systems, Volume 32(4), pages 2735 - 2743, 2017. DOI.
  • C. G. Petra, V. M. Zavala, E. N. Ruiz, M. Anitescu, A high-performance computing framework for analyzing the economic impacts of wind correlation, Electric Power Systems Research, Volume 141, pages 372-380, 2016. DOI.
  • J. Huchette, M. Lubin, C. G. Petra, Parallel algebraic modeling for stochastic optimization. The First Workshop for High Performance Technical Computing in Dynamic Languages (HPTCDL), Supercomputing 2014. DOI.
  • C. G. Petra, O. Schenk, M. Anitescu. Real-time Stochastic Optimization of Complex Energy Systems on High Performance Computers. Computing in Science & Engineering (CiSE) 16(5), pages 32-42. DOI.
  • N. Chiang, C. G. Petra, V. M. Zavala, Structured Nonconvex Optimization of Large-Scale Energy Systems Using PIPS-NLP. 18th IEEE Power Systems Computations Conference, 2014.
  • C. G. Petra, Olaf Schenk, Miles Lubin, Klaus Gaertner. An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization. SIAM J. Sci. Comput., 36-2, pages C139-C162, 2014. DOI
  • M. Lubin, K. Martin, C.G. Petra, and Burhaneddin Sandikic. On parallelizing dual decomposition in stochastic integer programming. Operations Research Letters 41(3), pages 252-258, 2013. DOI
  • M. Lubin, C. G. Petra, M. Anitescu, and V. Zavala. Scalable Stochastic Optimization of Complex Energy Systems. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), pages 64:1-64:10. DOI
  • M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu. Parallel distributed-memory simplex for large-scale stochastic LP problems., Computational Optimization and Applications 55(3), pages 571-596, 2013. Coin-OR INFORMS 2013 Cup winner + 2013 COAP Best Paper. DOI
  • M. Lubin, C. G. Petra, M. Anitescu. On the parallel solution of dense saddle-point linear systems arising in stochastic programming. Optimization Methods and Software, Volume 27, Number 4-5, Pages 845-864, 2012.
  • C. G. Petra, M. Anitescu. A preconditioning technique for Schur complement systems arising in stochastic optimization. Computational Optimization and Applications, Pages 315-344, Volume 52, Issue 2, 2012.
  • A. Draganescu, C. G. Petra. Multigrid preconditioning of linear systems for interior point methods applied to a class of bound-constrained control problems. SIAM Journal on Numerical Analysis, Volume 50, Number 1, Pages 328-353, 2012.
  • S. Al-Homidan, M. M. Alshahrani, C. G. Petra, F. A. Potra. Minimal Condition Number for Positive Definite Hankel Matrices using Semidefinite Programming. Linear Algebra and Its Applications, Volume 433, Issue 6, Pages 1101-1109, November 2010.
  • F. Gurtuna, C. G. Petra, F. A. Potra, O. Schevchenko, A. Vancea. Corrector-Predictor Methods for sufficient linear complementarity problems. Computational Optimization and Applications, Volume 48, Issue 3, Pages 453-485, April 2011. COAP Best Paper 2011 - Honorable mention.
  • C. G. Petra, B. Gavrea, M. Anitescu, F. A. Potra. A computational study on the use of an optimization based method in the simulation of large multi-body systems. Optimization Methods and Software, Volume 24, Issue 6, Pages 871-894, 2009.

Technical reports

  • S. Peles, K. Perumalla, M. Alam, A. Mancinelli, R. C. Rutherford, J. Ryan, C. G. Petra, Porting the Nonlinear Optimization Library HiOp to Accelerator-Based Hardware Architectures, submitted, 2021.
  • T. Hartland, C. G. Petra, N. Petra, J. Wang, Bound Constrained Partial Differential Equation Inverse Problem Solution by the Semi-Smooth Newton Method, Technical Report LLNL-TR-819385, 2021.
  • C. G. Petra, N. Chiang, J. Wang, "HiOp - User manual", Tech Report LLNL-SM-743591, 2018-2022, Lawrence Livermore National Laboratory.
  • M. Anitescu, C. G. Petra. Higher-Order Confidence Intervals for Stochastic Programming using Bootstrapping, 2012,  Tech Report ANL/MCS-P1964-1011. Argonne National Laboratory.
  • R. Serban, C. G. Petra. User Documentation for IDAS v1.0.0, 2008, Report UCRL-SM-234051, Lawrence Livermore National Laboratory.

Selected talks

  • SC-ACOPF using nonlinear non-convex optimization and high-performance computing, INFORMS Annual Meeting (2019), ARPA-E GridOptimization Outreach Event (2020), Energy Systems and Optimization Workshop - Georgia Tech (2020)
  • Parallel Structured Quasi-Newton Methods for Material Design, SIAM Conference on Optimization (2017), SIAM Student Chapter, UC Davis (2017)
  • Optimization and Design of Complex Engineering Systems using High-Performance Computing, SIAM-CSE (2017).
  • Scalable stochastic optimization of complex energy systems on high-performance computers, Zuse Institut Berlin (2016)
  • Modelling and solving SC-ACOPF problems in parallel, FERC Technical Conference on Increasing Market and Planning Efficiency through Improved Software (2016)
  • Optimization-based parameter estimation of dynamic power grid systems, SIAM UQ (2016).
  • Scalable optimization of complex energy systems using high-performance computing, Joint Mathematics Meeting, SIAM Parallel Processing (2016)
  • Parallel algebraic modelling for stochastic optimization in Julia, Platform for Advanced Scientific Computing Conference (2015)
  • On the role of wind correlation in the economic dispatch of power grid systems, SIAM CSE (2015)