Timothy Albert Myers

Postdoctoral Researcher
Atmospheric, Earth, and Energy Division
Email: myers74@llnl.gov
Phone: +19254223728


Ph.D. in Earth Sciences, Scripps Institution of Oceanography, University of California, San Diego, 2015

M.S. in Oceanography, Scripps Institution of Oceanography, University of California, San Diego, 2011

B.S. in Atmospheric Science, Cornell University, Ithaca, NY, 2009

Research Interests

I am interested in how and why climate changes in response to increasing greenhouse gases as well as naturally.  The response of global cloud patterns to human-induced climate change is a leading source of uncertainty in projections of global warming.  In my research, I aim to better understand the cloud processes that are salient to predictions of climate variability and change using a combination of observations, advanced statistical techniques, theory, and climate models.

Honors and Awards

NASA Earth and Space Science Fellowship, 2011–2014


Scott, R. C., T. A. Myers, J. R. Norris, M. D. Zelinka, S. A. Klein, M. Sun, and D. R. Doelling, 2020: Observed sensitivity of low cloud radiative effects to meteorological perturbations over the global oceans. J. Climate, 33, 7717–7734, https://doi.org/10.1175/JCLI-D-19-1028.1.

Myers, T. A., and C. R. Mechoso, 2020: Relative contributions of atmospheric, oceanic, and coupled processes to North Pacific and North Atlantic variability.  Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL086321.

Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL085782.

Rehbein, A., T. Ambrizzi, C. R. Mechoso, S. A. I. Espinosa, and T. A. Myers, 2019: Mesoscale convective systems over the Amazon basin: The GoAmazon 2014/5 program. Int. J. Climatol., 39, https://doi.org/10.1002/joc.6173.

Myers, T. A., C. R. Mechoso, G. V. Cesana, M. J. DeFlorio, and D. E. Waliser, 2018: Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett., 45, https://doi.org/10.1029/2018GL078242.

Myers, T. A., C. R. Mechoso, and M. J. DeFlorio, 2018: Importance of positive cloud feedback for tropical Atlantic interhemispheric climate variability.  Climate Dyn51, 1707-1717.

Myers, T. A., C. R. Mechoso, and M. J. DeFlorio, 2018: Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific. Climate Dyn., 50, 955-969.

Mechoso, C. R., T. Losada, S. Koseki, E. Mohino-Harris, N. Keenlyside, A. Castano-Tierno, T. A. Myers, B. Rodriguez-Fonseca, and T. Toniazzo, 2016: Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophys. Res. Lett., 43, 11057-11063.

Myers, T. A., and J. R. Norris, 2016: Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett., 43, 2144–2148.

Seethala, C., J. R. Norris, and T. A. Myers, 2015: How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Climate, 28, 8396-8410.

Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28, 2945-2967.

Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 7507-7524.