MariusMillot

Research Scientist
HED Physics Section / Physics Division
Email: millot1@llnl.gov
Phone: +19254226359

Education

  • PhD - 2009 - Physics - Université Paul Sabatier, Toulouse, France

  • MS - 2006 - Physics - Ecole Normale Supérieure de Lyon - France

  • Agrégation de Physique - 2005  ( Competitive Examination for civil service in the French Public education system)

  • BS - 2003 - Physics - Université Paul Sabatier, Toulouse, France

Research Interests

  • Experimental Physics of Matter at Extreme Conditions of Pressure & Temperature for Condensed Matter Physics, Materials Science, Earth, Planetary & Exoplanetary Science, High Energy Density Science and Inertial Confinement Fusion
  • Measurement Innovation in Ultrafast Dynamic Compression with High Power Lasers and Diamond Anvil Cell Static Compression
  • Technical and Data Analysis Methodology Development for Ultrafast Laser Doppler Velocimetry (VISAR), Pyrometry (SOP)  and Optical Spectroscopy
  • Keywords: Optical Properties, Equations of State, Phase Transitions, Impedance-Matching, X-ray diffraction, Shockwave compression of Solids and Fluids, New Exotic States of Matter, Low-Z Elements, Planetary Constituent Materials, Semiconductors

Selected Publications

See also:  ORCID: 0000-0003-4414-3532, Google Scholar and lists of Peer-Reviewed Publications and Other Publications below.

  1. Establishing Gold and Platinum Standards to 1 Terapascal Using Shockless Compression, D. E. Fratanduono, M. Millot, et al., Science 372, 1063-1068 (2021) link
  2. Experimental evidence of immiscibility in hydrogen-helium mixtures at Jupiter-interior conditions, S. Brygoo, P. Loubeyre, M. Millot, et al., Nature 593, 517-521 (2021) link
  3. Nanosecond x-ray diffraction of shock-compressed superionic water ice, M. Millot, F. Coppari, J. R. Rygg, A. Correa Barrios, S. Hamel, D. C. Swift and J. H. Eggert, Nature 569, 251-255 (2019) (MM and FC contributed equally to this work) link
  4. Insulator-metal transition in dense fluid deuterium, P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono, J. R. Rygg, A. F. Goncharov, et al., Science 361, 677-682 (2018) link
  5. Experimental evidence for superionic water ice using shock compression, M. Millot, S. Hamel, J. R. Rygg, P. M. Celliers, G. W. Collins, F. Coppari, D. E. Fratanduono, R. Jeanloz, D. C. Swift and J. H. Eggert, Nature Physics 14, 297-302 (2018) link
  6. Shock compression of stishovite and melting of silica at planetary interior conditions, M. Millot, N. Dubrovinskaia, A. Cernok, S. Blaha, S. Dubrovinsky, P. M. Celliers, G. W. Collins, J. H. Eggert and R. Jeanloz, Science 347, 418 (2015) link

Awards

  • European High Pressure Research Group (EHPRG) Award (2016)
  • LLNL Director’s Science and Technology Awards (2014, 2018, 2019 & 2020)
  • LLNL Physical and Life Sciences Directorate Awards (2015, 2016 & 2019)
  • LLNL Weapons and Complex Integration Directorate Award (2019)
  • LLNL NIF and Photon Science Directorate Award (2018)

International Newspapers

  • Le Monde: De l’hélium et de l’hydrogène comprimés comme sur Jupiter
  • New York Times: Settling Arguments About Hydrogen With 168 Giant Lasers
  • Le Monde: Bombarder l’hydrogène le rend métallique
  • New York Times: New Form of Water, Both Liquid and Solid, Is ‘Really Strange’
  • deVolkskrant: Nieuw ijssoort ontdekt: zwart, 2700 graden Celsius en mogelijk een antwoord over het binnenste van Uranus en Neptunus
  • El Mundo: El laboratorio donde 'nacen' los planetas

Science and Technology Magazines 

Podcasts

TV shows

Youtube

  • Seeker : The Newest Form of Water Is Hot and Black, Wait What? 

  • LLNL : How Do We Make New States of Matter in the Lab? | Superionic Ice

Peer-Reviewed Publications

[71]    Establishing Gold and Platinum Standards to 1 Terapascal Using Shockless Compression,

D. E. Fratanduono, M. Millot, et al., Science 372, 1063-1068 (2021) link

[70]    Techniques for studying materials under extreme states of high energy density compression,

H. S. Park, [...] M. Millot et al., Physics of Plasmas 28, 060901 (2021) link

[69]    Experimental evidence of immiscibility in hydrogen-helium mixtures at Jupiter-interior conditions,

S. Brygoo, P. Loubeyre, M. Millot, et al., Nature 593, 517-521 (2021) link

[68]    Fuel convergence sensitivity in indirect drive implosions,

O. L. Landen, [...] M. Millot, et al., Physics of Plasmas 28, 042705(2021) link

[67]    The principal Hugoniot of iron-bearing olivine to 1465 GPa,

B. Chidester, M. Millot et al., Geophysical Review Letters 48, e2021GL092471 (2021) link

[66]    Constraining computational modeling of indirect drive double shell capsule implosions using experiments,

B. M. Haines, [...] M. Millot et al., Physics of Plasmas 28, 032709 (2021) link

[65]    Interferometric measurements of refractive index and dispersion at high pressure,

Y.-J. Kim, P. M. Celliers, J. H. Eggert, A. Lazicki and M. Millot, Scientific Reports 11, 5610 (2021) link

[64]    Equation-of-state, sound speed, and reshock of shock-compressed fluid carbon dioxide,

L. E. Crandall, [...] M. Millot and G. W. Collins, Physics of Plasmas 28, 022708 (2021) link

[63]    Implications of the iron oxide phase transition on the interiors of rocky exoplanets,

F. Coppari, [...] M. Millot, et al., Nature Geoscience 14, 121-126 (2021) link

[62]    Principal factors in performance of indirect-drive laser fusion experiments,

C. A. Thomas, [...] M. Millot, et al., Physics of Plasmas 27, 112712 (2020) link

[61]    Experiments to explore the influence of pulse shaping at the National Ignition Facility,

C. A. Thomas, [...] M. Millot , et al., Physics of Plasmas 27, 112708 (2020) link

[60]    Nonideal Mixing Effects in Warm Dense Matter Studied with First-Principles Computer Simulations,

B. Militzer, [...] and M. Millot, The Journal of Chemical Physics, 153, 184101 (2020) link

[59]    Deficiencies in compression and yield in x-ray-driven implosions,

C. A. Thomas, [...] M. Millot, et al., Physics of Plasmas 27, 112705 (2020) link

[58]    Experimental measurement of two copropagating shocks interacting with an unstable interface,

C. A. Di Stefano, [...] and M. Millot, Physical Review E 102, 043212 (2020) link

[57]    High-precision shock equation of state measurements for metallic fluid carbon between 15 and 20 Mbar,

M. Millot, et al., Physics of Plasmas, 27, 102711 (2020) link

[56]    Equation of state of solid and liquid CO2 shocked to 1 TPa,

L. E. Crandall, [...] M. Millot and G. W. Collins, Physical Review Letters, 125, 165701 (2020) link

[55]    Application of cross-beam energy transfer to control  drive symmetry in ICF implosions in  low gas fill hohlraums at the National Ignition Facility,

L. A. Pickworth, [...] M. Millot , et al., Physics of Plasmas, 27, 102702 (2020) link

[54]    Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility

K. L. Baker, [...] M. Millot, et al., Physical Review E, 102, 023210 (2020)  link

[53]    Symmetric fielding of the largest diamond capsule implosions on the NIF

A. L. Kritcher, [...] M. Millot, et al., Physics of Plasmas 27, 052710 (2020) link

[52]    Achieving 275 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility

T. Doppner, [...] M. Millot, et al., Physics of Plasmas 27, 042701 (2020) link

[51]    Yield and Compression Trends and Reproducibility at NIF

O. L. Landen, [...] M. Millot, et al., High Energy Density Physics 36,100755 (2020) link

[50]    Recreating giants impacts in the laboratory: Shock compression of MgSiO3 bridgmanite to 14 Mbar

M. Millot, et al., Geophysical Review Letters 47, e2019GL085476 (2020) link

[49]    Probing the Solid Phase of Noble Metal Copper at Terapascal Conditions

D. E. Fratanduono, [...] M. Millot, et al., Physical Review Letters 124, 015701 (2020) link

[48]    Optimized x-ray sources for x-ray diffraction measurements at the Omega Laser Facility

F. Coppari, [...] M. Millot, et al., Review of Scientific Instruments 90, 125113 (2019) link

[47]    Measurement of body-centered cubic gold and melting under shock compression

R. Briggs, [...] M. Millot, et al., Physical Review Letters 123, 045701 (2019) link

[46]    Shock compression of liquid deuterium up to 1 TPa

A. Fernandez-Panella, M.  Millot, et al., Physical Review Letters 122, 255702 (2019) link

[45]    Nanosecond x-ray diffraction of shock-compressed superionic water ice

M. Millot*, F. Coppari*, J. R. Rygg, A. Correa Barrios, S. Hamel, D. C. Swift and J. H. Eggert, Nature 569, 251-255 (2019) link (*MM and FC contributed equally to this work)

[44]    Measurement of the sound speed in dense fluid Deuterium along the cryogenic liquid hugoniot

D. E. Fratanduono, M. Millot, et al., Physics of Plasmas 26, 012710 (2019) link

[43]    Energy transfer between lasers in low gas-fill density hohlraums

A. L. Kritcher,[...], M. Millot, et al., Physical Review E 98, 053206 (2018) link

[42]    Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility

A. B. Zylstra,[...], M. Millot, et al., Physics of Plasmas 25, 102704 (2018) link

[41]    High-performance indirect-drive cryogenic implosions at high adiabat on the National Ignition Facility

K. L. Baker, [...],M. Millot, et al., Physical Review Letters 121, 135001 (2018) link

[40]    Insulator-metal transition in dense fluid deuterium

P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono, J. R. Rygg, A. F. Goncharov, et al., Science 361, 677-682 (2018) link - Response to Comment on Insulator-metal transition in dense fluid deuterium, Science 363, eaaw1970 (2019) link

[39]    Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)

L. Berzak Hopkins,[...], M. Millot, et al., Plasma Physics and Controlled Fusion 61, 014023 (2018) link

[38]    Implosion shape control of high-velocity, large case-to-capsule ratio beryllium ablators at the National Ignition Facility

E. N. Loomis,[...], M. Millot, et al., Physics of Plasmas 25, 072708 (2018) link

[37]    Absolute equation-of-state measurement for Polystyrene from 25 to 60 Mbar using a spherically converging shock wave

T. Doppner,[...], M.  Millot, et al., Physical Review Letters 121, 025001 (2018) link

[36]    Thermodynamic properties of MgSiO3 at super-Earth mantle conditions

D. E. Fratanduono, M. Millot, et al., Physical Review B 97, 214105 (2018) link

[35]    Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility

S. LePape, [...] , M. Millot, et al., Physical Review Letters 120, 245003 (2018) link

[34]    The principal Hugoniot of forsterite to 950 GPa

S. Root, [...] , M. Millot, et al., Geophysical Review Letters 45, 3865 -3872 (2018) link

[33]    Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

M. Millot, P. M. Celliers, et al., Physical Review B 97, 144108 (2018) link

[32]    A near one-dimensional indirectly driven implosion at convergence ratio ∼ 30

S. A. MacLaren, [...] , M. Millot, et al., Physics of Plasmas 25, 056311 (2018) link

[31]    The high velocity, high adiabat, Bigfoot campaign and tests of indirect-drive implosion scaling

D. T. Casey, [...] , M. Millot, et al., Physics of Plasmas 25, 056308 (2018) link

[30]    Experimental evidence for superionic water ice using shock compression

M. Millot, S. Hamel, J. R. Rygg, P. M. Celliers, G. W. Collins, F. Coppari, D. E. Fratanduono, R. Jeanloz, D. C. Swift and J. H. Eggert, Nature Physics 14, 297-302 (2018) link

[29]   Shock equation of state of 6LiH to 1.1 TPa

A. Lazicki, [...], M. Millot, et al., Physical Review B 96, 134101 (2017) link

[28]    Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity

L. Divol, [...], M. Millot, et al., Physics of Plasmas 24, 056309 (2017) link

[27]     Examining the radiation drive asymmetries present in the high foot series of implosion ex- periments at the National Ignition Facility

A. Pak, [...], M. Millot, et al., Physics of Plasmas 24, 056306 (2017) link

[26]    Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

M. C. Gregor, [...] and M. Millot, Review of Scientific Instruments 87, 114903 (2016) link

[25]     Equation  of  state,  adiabatic  sound  speed,  and  Gruneisen  coefficient  of  boron  carbide  along the principal Hugoniot to 700 GPa

D.E. Fratanduono, [...], M. Millot, et al., Physical Review B 94, 184107 (2016) link

[24]    Identifying and discriminating phase transitions along decaying shocks with line imaging Doppler interferometric velocimetry and streaked optical pyrometry

M. Millot, Physics of Plasmas 23, 014503 (2016) link

[23]    Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium

S. Brygoo, M. Millot, et al., Journal of Applied Physics 118, 195901 (2015) link

[22]    Optical and Transport Properties of Dense Liquid Silica

T. Qi, M. Millot, R. G. Kraus, Root, and S. Hamel, Physics of Plasmas 22, 062706 (2015) link

[21]    Ultrabright X-ray laser scattering for dynamic warm dense matter physics

L. B. Fletcher, [...], M. Millot, et al., Nature Photonics 9, 274-279 (2015) link - Reply to: Reconsidering X-ray plasmons, Nature Photonics 13, 751-753 (2019) link

[20]    Shock compression of stishovite and melting of silica at planetary interior conditions

M. Millot, N. Dubrovinskaia, A. Cernok, S. Blaha, L. S. Dubrovinsky, P. Celliers, G. W. Collins, J. H. Eggert and R. Jeanloz, Science 347, 418 (2015) link

[19]    Red-green luminescence in indium gallium nitride alloys investigated by high pressure optical spectroscopy

M. Millot, Z. M. Geballe, K. M. Yu, W. Walukiewicz, and R. Jeanloz, Applied Physics Letters 100, 162103 (2012) link

[18]    Weak ferrimagnetism and multiple magnetization reversal in α-Cr3(PO4)2

A. Vasiliev, O. Volkova, E. Hammer, R. Glaum, J.-M. Broto, M. Millot, et al., Physical Review B 85, 014415 (2012) link

[17]    Determination of effective mass in InN by high-field oscillatory magnetoabsorption spectroscopy

M. Millot, N. Ubrig, J.-M. Poumirol, I. Gherasoiu, W. Walukiewicz, et al., Physical Review B 83, 125204 (2011) link

[16]    Comparative Raman spectroscopy of individual and bundled double wall carbon nanotubes

P. Puech, S. Nanot, B. Raquet, J.-M. Broto, M. Millot, et al., Physica Status Solidi B 248, 974-979 (2010) link

[15]    Doping dependence of the G-band Raman spectra of an individual multiwall carbon nanotube

S. Nanot, M. Millot, et al., Physica E 42, 2466-2470 (2010) link

[14]    Pressure dependence of Raman modes in double wall carbon nanotubes filled with 1D Tellurium

E. Belandria, M. Millot, et al., Carbon 48, 2566-2572 (2010) link

[13]    Electronic structure of indium selenide probed by magnetoabsorption spectroscopy under high pressure

M. Millot,  J.-M.  Broto,  S.  George,  J.  Gonzalez  and  A.  Segura,  Physical  Review  B  81, 205211 (2010) link

[12]    Anharmonic effects in ZnO optical phonons probed by Raman spectroscopy

M. Millot, R. Tena-Zaera, V. Munoz-Sanjose, J.-M. Broto and J. Gonzalez, Applied Physics Letters 96, 152103 (2010) link

[11]    Trigonal field acting at the Cr3+ E2 states in ruby from magneto-optical measurements under high pressure

M. Millot,  J.-M.  Broto,  J.  Gonzalez  and  F.  Rodriguez,  Physical  Review  B  81,  075120 (2010) link

[10]    Electron cyclotron effective mass in indium nitride

M. Goiran, M. Millot, J.-M. Poumirol, W. Walukiewicz, I.Gherasoiu and J. Leotin, Applied Physics Letters 96(5), 052117 (2010) link

[9]     Thermodynamic properties and neutron diffraction studies of silver ferrite AgFeO2

A. Vasiliev, [...], M. Millot, et al., Journal of Physics : Condensed Matter 22(1), 016007 (2010) link

[8]      Evidence of type-I direct recombination in InP/GaP quantum dots via magnetoluminescence

C.v. Dewitz, F. Hatami, M. Millot, et al., Applied Physics Letters 95(15), 151105 (2009) link

[7]      High pressure and high magnetic field behavior of free and donor-bound exciton photoluminescence in InSe

M. Millot, et al., Physica Status Solidi B 246, 532-535 (2009) link

[6]      Photoluminescence of InP/GaP quantum dots under extreme conditions

M. Millot, C.v. Dewitz, F. Hatami, et al., High Pressure Research 29(4), 488-494, (2009) link

[5]      Er3+ luminescence as a sensor of high pressure and strong external magnetic fields

R. Valiente, M. Millot, et al., High Pressure Research 29(4), 748-753, (2009) link

[4]      New Diamond Anvil Cell for optical and transport measurements under high magnetic fields up to 60 T

M. Millot, et al., High Pressure Research 28 (4), 627-631, (2008) link

[3]      Pressure dependence of Raman modes in DWCNT filled with α-Fe

J. Gonzalez, [...], M.  Millot, et al., High Pressure Research 28 (4), 577 - 582, (2008) link

[2]      High field Zeeman and Paschen-Back effects at high pressure in oriented ruby

M.  Millot, J.-M. Broto and J. Gonzalez, Physical Review B 78, 155125 (2008) link

[1]      Raman spectroscopy and magnetic properties of bulk ZnO:Co single crystal

M. Millot, et al., Journal of Alloys and Compounds 423, 224-227 (2006) link

Other Publications

[O3] The Underexplored Frontier of Ice Giant Interiors and Dynamos, A white paper for the 2023–2032 Decadal Survey on Planetary Science and Astrobiology. K. M. Soderlund, M. Bethkenhagen, I. de Pater, J. Fortney, S. Hamel, R. Helled, Y.-J. Kim, M. Millot and S. Stanley

[O2] Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: a Horizon 2061 Perspective. Part I: From Science Questions to Measurement Requirements, A white paper for the 2023–2032 Decadal Survey on Planetary Science and Astrobiology. M. Blanc, [...] M. Millot, et al.

[O1] Upgrades to the VISAR Streaked Optical Pyrometer (SOP) system on NIF, A.M. Manuel*, M. Millot, L. G. Seppala, G. Frieders, Z. Zeid, K. Christensen and P. M. Celliers, Proc. SPIE 9591, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion IV, 959104 (2015) link