This site is currently in beta, and mobile optimization is currently not in place. Thanks for your patience as we continue to improve the user experience.

Amitesh Maiti

Portrait of  Amitesh Maiti

  • Title
    Computational Physicist
  • Email
  • Phone
    (925) 422-6657

Research Interests


  • Energetic materials
  • Structural & Responsive Polymers
  • Materials to reduce carbon footprint
  • Ionic Liquids, novel solvents
  • Nanomaterials, composites, interfaces

Focus Areas

  • Aging, Degradation, Lifetime Modeling
  • Polymer rheology, Additive Manufacturing
  • Carbon Capture, Green Chemistry
  • Statistics, Machine Learning, Computer Vision 
  • Data-driven screening, Materials AI


7 ROIs/ 3 Patents (+ 1 Pending)

Ph.D., Condensed Matter Physics, University of California at Berkeley, 1992

M.S., Physics, University of North Carolina, Chapel Hill, 1988

B.Sc., Physics (Summa Cum Laude), Presidency College (Univ. Calcutta), India, 1986

Google Scholar Profile


Molecular Modeling Techniques in Material Sciences, J. R. Hill, L. Subramanian, and A. Maiti, CRC Press, Boca Raton, Florida (2005).

Selected Publications

Polymer degradation through chemical change: A quantum-based test of inferred reactions in irradiated polydimethylsiloxane, M. P. Kroonblawd, N. Goldman, A. Maiti, and J. P. Lewicki, Phys. Chem. Chem. Phys., in press  (2022).

Towards replacing physical testing of granular materials with a Topology-based Model, A. Venkat, A. G. Gyulassi, G. D. Kosiba, A. Maiti, H. Reinstein, R. H. Gee, P.-T. Bremer, V. Pascucci, IEEE T VIS COMPUT GR 28, 76 (2022).

Constitutive model of radiation aging effects in filled silicone elastomer under strain, A. Maiti, W. Small, M. Kroonblawd, J. Lewicki, N. Goldman, T. Wilson, A. Saab, J. Phys. Chem. B 125, 10047 (2021).

Time-temperature-superposition analysis of diverse datasets by the minimum-arclength method: long-term prediction with uncertainty margins, A. MaitiRheol. Acta 60, 155 (2021).

A quantum-based approach to predict primary radiation damage in polymeric networks, M. P. Kroonblawd, N. Goldman, A. Maiti, and J. P. Lewicki, J. Chem. Theory Comput. 17, 463 (2021).

Topological analysis of X-ray CT data for the recognition and trending of subtle changes in microstructure under material aging, A. Maiti, A. Venkat, G. D. Kosiba, W. L. Shaw, J. D. Sain, R. K. Lindsey, C. D. Grant, P. -T. Bremer, A. G. Gyulassi, V. Pascucci, and R. H. Gee, Comput. Mat. Sci. 182, 109782 (2020).

Structural Anomalies and Electronic Properties of an Ionic Liquid under Nanoscale Confinement, T. A. Pham, R. M. Coulthard, M. Zobel, A. Maiti, S. F. Buchsbaum, C. Loeb, P. G. Campbell, D. L. Plata, B. C. Wood, F. Fornasiero, and E. R. Meshot, J. Phys. Chem. Lett. 11, 6150 (2020).

Age-aware constitutive materials model for a 3D printed polymeric foam, A. Maiti, W. Small, J. P. Lewicki, S. C. Chinn, T. S. Wilson, and A. P. Saab, Sci. Rep. 9, 15923 (2019).

Second-order statistical bootstrap for the uncertainty quantification of time-temperature-superposition analysis, A. Maiti, Rheo. Acta 58, 261 (2019).

Printable enzyme-embedded materials for methane to methanol conversion, C. D. Blanchette, J. Knipe, J. K. Stolaroff, J. R. DeOtte, J. S. Oakdale, A. Maiti, J. M. Lenhardt, S. Sirajuddin, A. Rosenzweig, and S. E. Baker, Nature Communications 7, 11900 (2016). 

3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response, A. Maiti, W. Small, J. P. Lewicki, T. H. Weisgraber, E. B. Duoss, S. C. Chinn, M. A. Pearson, C. M. Spadaccini, R. S. Maxwell, and T. S. Wilson, Scientific Reports (Nature), 6, 24871 (2016).

SnO2 Nanoslab as NO2 sensor: Identification of the NO2 Sensing Mechanism on a SnO2 Surface, S. Maeng, S.-W. Kim, D. -H. Lee, S. Moon, K. Kichul, and A. Maiti, ACS Appl. Mater. Interfaces 6, 357 (2014).

New Materials for Methane capture from dilute and medium-concentration sources, J. Kim, A. Maiti, L-C. Lin, J. K. Stolaroff, B. Smit, and R. D. Aines, Nature Communications 4, 1694 (2013).

Water-clustering in hygroscopic Ionic Liquids – an implicit solvent analysis, A. Maiti, A. Kumar, and R. D. Rogers, Phys. Chem. Chem. Phys. 14, 5139 (2012).

Ionic Polymers as a New Structural Motif for High-Energy-Density Materials, O. S. Bushuyev, P. Brown, A. Maiti, R. H. Gee, G. R. Peterson, B. L. Weeks, and L. J. Hope-Weeks, JACS 134, 1422 (2012).

Prebiotic Amino Acid Synthesis from Impacts of Comets on Early Earth, N. Goldman, E. J. Reed, L. E. Fried, I-F. W. Kuo, and A. MaitiNature (Chemistry) 2, 949 (2010).

Theoretical screening of Ionic Liquid solvents for CO2 capture, A. MaitiChemSusChem 2, 628 (2009).

Conductivity of Carbon Nanotube Polymer Composites, J. Wescott, P. Kung, and A. MaitiAppl. Phys. Lett 90, 033116 (2007).

SnO2 nanoribbons as NO2 sensors: insights from First-Principles calculations, A. Maiti, J. A. Rodriguez, M. Law, P. Kung, J. McKinney and P. Yang, Nano Lett. 3, 1025 (2003).

Carbon Nanotubes: Band gap Engineering with strain, A. Maiti, News & Views, Nature Materials 2, 440 (2003).

Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality, A. Maiti, A. Svizhenko, and M. P. Anantram, Phys. Rev. Lett. 88, 126805 (2002).

Effect of adsorbates on field-emission from carbon nanotubes, A. Maiti, J. Andzelm, N. Tanpipat, and P. von Allmen, Phys. Rev. Lett. 87, 155502 (2001).

Kinetics of metal-catalyzed growth of single-walled nanotubes, A. Maiti, C. J. Brabec, and J. Bernholc, Phys. Rev. B (Rapid Commun.) 55, R6097 (1997).

Dopant segregation at semiconductor grain boundaries through cooperative chemical rebonding, A. Maiti, M. F. Chisholm, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 77, 1306 (1996).

Structural flexibility of carbon nanotubes, S. Iijima, C. J. Brabec, A. Maiti, and J. Bernholc, J. Chem. Phys. 104, 2089 (1996).

Growth energetics of fullerene nanotubes, A. Maiti, C. J. Brabec, C. Roland, and J. Bernholc, Phys. Rev. Lett. 73, 2468 (1994).

Structure and Energetics of Single and Multilayer Fullerene Cages, A. Maiti, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 70, 3023 (1993).

Stern-Gerlach Dynamics of Magnetic Clusters, A. Maiti and L. M. Falicov, Phys. Rev. B 48, 13596 (1993).