This site is currently in beta, and mobile optimization is currently not in place. Thanks for your patience as we continue to improve the user experience.

Joshua D. Kuntz

Portrait of  Joshua D. Kuntz

  • Title
    Group Leader, High Performance Materials
  • Email
    kuntz2@llnl.gov
  • Phone
    (925) 423-9593
  • Organization
    Not Available

Background

Currently group leader of the High Performance Materials group and previously deputy group leader of the Functional Material Synthesis Integration group, Joshua joined LLNL in 2005 as a postdoctoral researcher and is an SME for materials processing, especially ceramics. He is a key personnel in the development of additive manufacturing (LDRD, WCI, & external sponsors), transparent ceramics (DHS & WCI), and energetic materials (DTRA & JMP).

Research Interests

  • Processing and properties of
    • Nanocrystalline materials
    • Sol-gel routes to novel materials
    • Advanced consolidation methods
    • Transparent ceramics for functional applications
  • Development of customized additive manufacturing methods, with focus on enabling micro to nanoscale features and broadening the material set available for additive manufacturing, including metals, ceramics, polymers, and composites thereof

Patents

7,128,850 “Electrically conductive Si-Ti-C-N ceramics,” Duan, Ren-Guan: Kuntz, Joshua D.: Mukherjee, Amiya K. (2006)

6,976,532 “Anisotropic thermal applications of composites of ceramics and carbon nanotubes,” Zhan, Guodong; Kuntz, Joshua D.; Mukherjee, Amiya K. (2005)

6,905,649 “High-density barium titanate of high permittivity,” Zhan, Guodong; Mukherjee, Amiya K.; Kuntz, Joshua D.; Wan, Julin (2005)

6,875,374 “Ceramic materials reinforced with single-wall carbon nanotubes as electrical conductors,” Zhan, Guodong; Kuntz, Joshua D.; Mukherjee, Amiya K. (2005)

6,858,173 “Nanocrystalline ceramic materials reinforced with single-wall carbon nanotubes,” Zhan, Guodong; Mukherjee, Amiya K.; Kuntz, Joshua D.; Wan, Julin (2005)

Ph.D., Materials Science & Engineering, University of California, Davis, 2005

B.S., Materials Science & Engineering, University of California, Davis, 1997

  1. Zhu, C. et al., “Highly compressible 3D periodic graphene aerogel microlattices,” Nature Comm 6 [6962], 2015.
  2. Zheng, X. et al., “Ultralight, Ultrastiff Mechanical Metamaterials,”  Science  344 [6190], 1373–1377, 2014.
  3. Sullivan, K. T., Kuntz, J. D., and Gash, A. E., “The Role of Fuel Particle Size on Flame Propagation Velocity in Thermites with a Nanoscale Oxidizer,” PEP 39 [3], 407–415, 2014. (Invited article.)
  4. Pascall, A. J., et al., “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Matls. 26 [14], 2252–2256, 2014.
  5. Pascall, A. J., Sullivan, K. T., and Kuntz, J. D., “Morphology of Electrophoretically Deposited Films on Electrode Strips,” J. Phys. Chem. B, 117 [6], 1702–1707, 2013.
  6. Kuntz, J. D., J. J. Roberts, M. Hough, and N. J. Cherepy, “Multiple synthesis routes to transparent ceramic lutetium aluminum garnet,” Scripta Materialia, submitted (2007).
  7. Cherepy, N. J., J. D. Kuntz, T. M. Tillotson, D. T. Speaks, S. A. Payne, B. H. T. Chai, Y. Porter-Chapman, S. E. Derenzo, “Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators,” Nuclear Instruments and Methods: A, in press (2007).
  8. Zhan, G.-D., J. D. Kuntz, A. K. Mukherjee, P. Zhu, and K. Koumoto, “Thermoelectric properties of carbon nanotube/ceramic nanocomposites,” Scripta Materialia 54 [1]77-82 (2006).
  9. Sergueeva, A. V., N. A. Mara, J. D. Kuntz, E. J. Lavernia, and A. K. Mukherjee, “Shear band formation and ductility in bulk metallic glass,” Philosophical Magazine 85 [23]2671-87 (2005).
  10. Duan, R. G., J. E. Garay, J. D. Kuntz, and A. K. Mukherjee, “Electrically conductive in situ formed nano-Si3N4/SiC/TiCxN1-x ceramic composite consolidated by pulse electric current sintering (PECS),” Journal of the American Ceramic Society 88 [1]66-70 (2005).
  11. Kuntz, J. D., G.-D. Zhan, and A. K. Mukherjee, “Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness,” MRS Bulletin 29 [1]740-748 (2004).
  12. Duan, R.-G., J. D. Kuntz, J. E. Garay, and A. K. Mukherjee, “Metal-like electrical conductivity in ceramic nano-composite,” Scripta Materialia 50 [10]1309-1313 (2004).
  13. Zhan, G.-D., J. D. Kuntz, J. Wan, and A. K. Mukherjee, “Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites,” Nature Materials 2, 38-42 (2003).
  14. Zhan, G.-D., J. D. Kuntz, J. Wan, J. E. Garay, and A. K. Mukherjee, “A Novel Processing Route to Develop a Dense Nanocrystalline Alumina Matrix (<100nm) Nanocomposite Material,” Journal of the American Ceramic Society 86 [1]200-202 (2003).
  15. Zhan, G.-D., J. D. Kuntz, J. Wan, J. E. Garay, and A. K. Mukherjee, “Spark-Plasma-Sintered BaTiO3/Al2O3 Nanocomposites,” Materials Science & Engineering A A356, 443-446 (2003).
  16. Zhan, G.-D., J. D. Kuntz, J. Wan, J. E. Garay, and A. K. Mukherjee, “Alumina-based Nanocomposites Consolidated by Spark Plasma Sintering,” Scripta Materials 47, 737-741 (2002).