Kareem Kazkaz

Staff Scientist
Nuclear and Chemical Sciences Division
Email: kareem@llnl.gov
Phone: +19254227208

Education

  • Ph.D., Physics, University of Washington, 2006
  • M.Sc., Physics, University of Washington, 2001
  • B.Sc., Physics, Carleton College, 1995

Research Interests

Kareem Kazkaz is a member of the Rare Event Detection group that builds and operates high-precision radiation detectors and develops algorithms aimed at detecting highly elusive particle interactions. His focus is specifically on direct neutrino mass measurements and WIMP dark matter detection. He is also involved in nuclear nonproliferation experiments involving highly efficient neutron detectors, scoping studies for use by the IAEA, as well as high-energy photon active interrogation to search for shielded SNM. His applied work also includes development of a small form factor nuclear battery.

Honors and Awards

  • Directorate Award, Sprite Experiment, 2018
  • Nuclear Instruments and Methods in Physics Research A, Most Valued Reviewer, 2017
  • Spot Award, Water Cherenkov neutron detector, 2017
  • Directorate Award, PASS Experiment, 2015
  • Directorate Award, LUX Experiment, 2014
  • DOE Office of Science Outstanding Mentor, 2010

Selected (Recent) Publications

  1. Akerib, DS; Alsum, S; Araujo, HM, et al., “Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector,” Phys. Rev. D.97, 112002 (2018).
  2. Esfahani, AA; Asner, DM; Boser, S, et al. “Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8,” J. Phys. G-Nucl. Partic.44, 054004 (2017).
  3. Akerib, DS;  Alsum, S; Araujo, HM, et al. “Results from a Search for Dark Matter in the Complete LUX Exposure,” Phys. Rev. Lett.118, 021303 (2017).
  4. Akerib, DS;  Araujo, HM;  Bai, X, et al. “Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data,” Phys. Rev. Lett.116, 161301 (2016).
  5. Kazkaz, K; Joshi, TH. “A model for the secondary scintillation pulse shape from a gas proportional scintillation counter,” J. Instrum.11, P03002 (2016).
  6. Stolp, D; Dalager, O; Dhaliwal, N, et al. “An estimation of photon scattering length in tetraphenyl-butadiene,” J. Instrum.11, C03025 (2016).
  7. Lenardo, B; Kazkaz, K; Manalaysay, A, et al. “A Global Analysis of Light and Charge Yields in Liquid Xenon,” IEEE T. Nucl. Sci.62, 3387-3396, (2015).
  8. Foxe, M; Hagmann, C; Jovanovic, I, et al. “Modeling ionization and recombination from low energy nuclear recoils in liquid argon,” Astropart. Phys., 69, 24-29, (2015).
  9. Rich, GC; Kazkaz, K; Martinez, HP, et al. “Fabrication and characterization of a lithium-glass-based composite neutron detector,” Nucl. Instrum. Meth. A, 794, 15-24, (2015).
  10. Horn, M; Akerib, DS; Araujo, HM, et al. “Results from the LUX dark matter experiment,” Nucl. Instrum. Meth. A, 784, 504-507, (2015).
  11. Akerib, DS; Araujo, HM; Bai, X, et al. “Radiogenic and muon-induced backgrounds in the LUX dark matter detector,” Astropart. Phys., 62, 33-46, (2015).
  12. Foxe, M; Hagmann, C; Jovanovic, I, et al. “Low-energy (< 10 keV) electron ionization and recombination model for a liquid argon detector,” Nucl. Instrum. Meth. A, 771, 88-92, (2015).
  13. Joshi, TH; Sangiorgio, S; Bernstein, A, et al. “First Measurement of the Ionization Yield of Nuclear Recoils in Liquid Argon,” Phys. Rev. Lett., 112, 171303 (2014).
  14. Mock, J; Barry, N; Kazkaz, Ket al. “Modeling pulse characteristics in Xenon with NEST,” J. Instrum., 9, T04002 (2014).
  15. Akerib, DS; Araujo, HM; Bai, X, et al. “First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility,” Phys. Rev. Lett., 112, 091303 (2014).
  16. Sangiorgio, S; Joshi, TH; Bernstein, A, et al. “First demonstration of a sub-keV electron recoil energy threshold in a liquid argon ionization chamber,” Nucl. Instrum. Meth. A, 728, 69-72, (2013).
  17. Kazkaz, K; Bowden, NS; Pedretti, M. “Comparison of Lithium Gadolinium Borate Crystal Grains in Scintillating and Nonscintillating Plastic Matrices,” IEEE T. Nucl. Sci., 60, 1416-1426, (2013).
  18. Akerib, DS; Bai, X; Bedikian, S, et al. “LUXSim: A component-centric approach to low-background simulations,” Nucl. Instrum. Meth. A, 675, 63-77, (2012).
  19. Szydagis, M; Barry, N; Kazkaz, Ket al. “NEST: a comprehensive model for scintillation yield in liquid xenon,” J. Instrum., 6, P10002 (2011).
  20. Kazkaz, K; Walsh, N. “Combining stochastics and analytics for a fast Monte Carlo decay chain generator,” Nucl. Instrum. Meth. A, 654, 170-175, (2011).
  21. Kazkaz, K; Foxe, M; Bernstein, A, et al. “Operation of a 1-liter-volume gaseous argon proportional scintillation counter,” Nucl. Instrum. Meth. A, 621, 267-277, (2010).
  22. Mei, DM; Elliott, SR; Hime, A, et al. “Neutron inelastic scattering processes as a background for double-beta decay experiments,” Phys. Rev. C, 77, 054614 (2008).
  23. Elliott, SR; Gehman, VM; Kazkaz, Ket al. “Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments,” Nucl. Instrum. Meth. A, 558, 504-510, (2006).
  24. Aalseth, CE; Anderson, D; Arthur, R, et al. “The Majorana neutrinoless double-beta decay experiment,” Phys. Atom. Nucl., 67, 2002-2010, (2004).
  25. Kazkaz, K; Aalseth, CE; Hossbach, TW, et al. “MEGA: A low-background radiation detector,” IEEE T. Nucl. Sci., 51, 1029-1033, (2004).