Ilon Joseph

LLNL Logo

  • Title
    Research Staff
  • Email
    joseph5@llnl.gov
  • Phone
    (925) 422-3737
  • Organization
    Not Available

Research Experience

  • Acting Group Leader, Theory and Modeling, Fusion Energy Sciences Program, Physics Division, LLNL, 2023-present
  • Deputy Group Leader, Theory and Modeling, Fusion Energy Sciences Program, Physics Division, LLNL, 2018-2023
  • Research Scientist, Theory and Modeling, Fusion Energy Sciences Program, Physics Division, LLNL, 2011-Present
  • Post-doctoral Research Scientist, Theory and Modeling, Fusion Energy Sciences Program, Physics Division, LLNL, 2008-2011
  • Post-doctoral Research Scientist, Center for Energy Research, UC San Diego, 2005-2008

Ilon Joseph is a theoretical and computational physicist with interests in plasma physics, magnetic fusion energy, nonlinear dynamics, quantum computing and quantum information science. Specific areas of expertise include edge plasma physics, magnetic reconnection, chaotic dynamical systems, and high performance scientific computing. Recently, Ilon has become interested in quantum computation and has developed efficient quantum algorithms for simulating dynamical systems and solving generalized eigenvalue problems. He has also played a key role in demonstrating the performance of these algorithms on present-day quantum computing hardware platforms.

Ph.D., Physics, Columbia University, 2005

B.S., Physics, Stanford University, 1994

  1. I. JosephY. Shi, M. D. Porter, A. R. Castelli, V. I. Geyko, F. R. Graziani, S. B. Libby, J. L. DuBois, "Quantum computing for fusion energy science applications," Phys. Plasmas 30, 010501 (2023). https://doi.org/10.1063/5.0123765
  2. Y. Shi, A. R. Castelli, X. Wu, I. Joseph, V. Geyko, F. R. Graziani, S. B. Libby, J. B. Parker, Y. J. Rosen, L. A. Martinez, and J. L. DuBois, “Simulating non-native cubic interactions on noisy quantum machines,” Phys. Rev. A 103, 062608 (2021). https://link.aps.org/doi/10.1103/PhysRevA.103.062608
  3. I. Joseph, “Guiding center and gyrokinetic orbit theory for large electric field gradients and strong shear flows,” Phys. Plasmas 28, 042102 (2021). https://doi.org/10.1063/5.0037889
  4. I. Joseph, “Koopman-von Neumann approach to quantum simulation of nonlinear classical dynamics,” Phys. Rev. Research 2, 043102 (2020). https://link.aps.org/doi/10.1103/PhysRevResearch.2.043102
  5. I. Joseph, M. A. Dorf, and M. R. Dorr, “Simulation of edge localized mode heat pulse using drift-kinetic ions and Boltzmann electrons,” Nucl. Mater. Energy 19, 330 (2019). https://doi.org/10.1016/j.nme.2019.02.013
  6. J.-Y. Ji and I. Joseph, “Electron parallel closures for the 3+1 fluid model,” Phys. Plasmas 25, 032117 (2018). https://doi.org/10.1063/1.5014996
  7. A. M. Dimits, I. Joseph, and M. V. Umansky, “A Fast Non-Fourier Method for Landau-fluid Operators,” Phys. Plasmas 21, 055907 (2014). http://dx.doi.org/10.1063/1.4876617
  8. I. Joseph, “Edge-Localized Mode Control and Transport Generated by Externally Applied Magnetic Perturbations,” Contrib. Plasma Phys. 52, 326 (2012). http://dx.doi.org/10.1002/ctpp.201210014
  9. I. Joseph, R. H. Cohen, T. D. Rognlien and D. D. Ryutov, “Generation of non-axisymmetric scrape-off layer perturbations for controlling tokamak edge plasma profiles and stability,” Phys. Plasmas 19, 056124 (2012). http://dx.doi.org/10.1063/1.3702048
  10. I. Joseph, T. E. Evans, A. M. Runov, M. E. Fenstermacher, M. Groth, S. V. Kasilov, C. J. Lasnier, R. A. Moyer, G. D. Porter, M. J. Schaffer, R. Schneider and J. G. Watkins, “Calculation of stochastic thermal transport due to resonant magnetic perturbations in DIII-D,” Nucl. Fusion 48, 045009 (2008). http://dx.doi.org/10.1088/0029-5515/48/4/045009