Eyal Feigenbaum

Portrait of  Eyal Feigenbaum

  • Title
    Science & technology group leader, Optics & Materials organization
  • Email
    feigenbaum1@llnl.gov
  • Phone
    (925) 423-1343
  • Organization
    NIF-LSSE-LASER SCIENCE AND SYSTEMS ENGINEERING

Eyal co-leads the science & technology group in the Optics & Materials organization (OMST) in the NIF and Photon science Directorate. Before joining OMST, he worked as a computational physicist in NIF system engineering, and before that as a postdoctoral researcher at the California Institute of Technology (in Applied Physics). His main fields of interest are laser optics technology, light-matter interaction, beam propagation in complex media, and optical modeling. Key technologies of interest include: robust and scalable metasurface optics for high power lasers, dynamically tunable metasurfaces for laser beam control, laser processing of optics, photonics devices based on enhanced light-matter interaction.

 

Fields of expertise:

Optical modeling: Full-wave simulations of Maxwell equations, beam propagation method, ray optics, T and S matrix formalism, analytical methods in optics.

Metasurfaces: e.g., led a team developing an all-glass metasurface technology for high power lasers that is durable and scalable. This technology enables broadband anti-refection layers, freeform optical elements, and waveplates.

Laser processing of glass: e.g., leading the working group for R&D of the laser fabrication of damage mitigation (NIF RAM sites).

Laser induced damage: e.g., study of filamentation damage formation in glass, and formation of damage on RAM sites on NIF optics. 

Light propagation: e.g., modeling of the NIF-like laser systems physics (advancing VBL – the code that is used to model NIF beamlines), as well as beam propagation in the atmosphere and in complex media (e.g., solitons in optical fibers, plasmonic waves on metal surfaces)

Nano-photonics: e.g., plasmonic devices (Ph.D. focus), “Resonant guided wave networks” and ITO based light modulators (concepts originated as postdoc at CalTech)

 

Patents:

- E. Feigenbaum, J. Bude, “System and method for focal-plane angular-spatial illuminator/detector (FASID) design for improved graded index lenses,” U.S. Patent 10,408,705, (September 10, 2019)

- E. Feigenbaum, “Nanostructured Layer For Graded Index Freeform Optics,“ U.S. Patent 10,612,145, (April 7, 2020)

- E. Feigenbaum, G. S. Allen, J. W. Dawson, M. A. Noginov, “System and Method for Plasmonic Control of Short Pulses in Optical Fibers,” U.S. Patent 10,756,503 B2, (August 25, 2020); U.S. Patent 11,374,378 B2, (Jun 28, 2022)

- J. H. Yoo, E. Feigenbaum, M. J. Matthews, “Fast image acquisition system and method using pulsed light illumination and sample scanning to capture optical micrographs with sub-micron features,“ U.S. Patent 2020/0371044 A1  (November 26, 2020); U.S. Patent 11,624,710 B2,  (April 11, 2023)

- E. Feigenbaum, Nathan J. Ray, J. H. Yoo, “System and method for repeated metal deposition-dewetting steps to form a nano-particle etching mask producing thicker layer of engraved metasurface,” U.S. Patent 11,294,103 (April 5, 2022)

- J. H. Yoo, E. Feigenbaum, “System and method for ablation assisted nano structure formation for graded index surfaces for optics,“ U.S. Patent 11,525,945, (December 13, 2022)

- E. Feigenbaum, J. Bude, J. M. Di-Nicola, H. T. Nguyen, C. Stolz, “Angled directional etching through a mask to form a bi-refringent meta-surface,” U.S. Patent 11,747,639, (September 5, 2023)

Ph.D. Electrical Engineering, Technion – Israel Institute of Technology, 2008 (Dissertation: “Slow Wave Phenomena in Plasmonic Nano-Circuitry")

M.Sc., Electrical Engineering, Technion – Israel Institute of Technology, 2004 (Dissertation: “Colored Solitons Interaction")

B.Sc., Electrical Engineering, Technion – Israel Institute of Technology, 1998

*[1] Allison E. M. Browar, Isaac Bass, Gabe Guss, Jim Vickers, Mary Norton, Christopher Wren Carr, and Eyal Feigenbaum, "Laser micro-machining and damage testing of rounded shadow cone blockers on silica glass for arresting laser damage growth by redirection of light," Opt. Express 32, 4050-4061 (2024).
#laser induced damage; #optical modeling

[2] Nathan J. Ray, Jae-Hyuck Yoo, Hoang T. Nguyen, Mary Norton, David Cross, Christopher W. Carr, and Eyal Feigenbaum, “Enhanced laser-induced damage performance of all-glass metasurfaces for energetic pulsed laser applications,” Appl. Opt. 62 (31), 8219-8223 (2023).
#meaturefaces; #laser induced damage;

*[3] N. J. Ray, J.-H. Yoo, H. T. Nguyen, M. A. Johnson, E. Feigenbaum, “Birefringent Glass-Engraved Tilted Pillar Metasurfaces for High Power Laser Applications,” Adv. Sci 10, 20230013, http://dx.doi.org/10.1002/advs.202301111 (2023).
#meaturefaces;

*[4] N. J. Ray, J.-H. Yoo, H. T. Nguyen, E. Feigenbaum, “All-Glass Metasurfaces for Ultra-Broadband and Large Acceptance Angle Antireflectivity: from Ultraviolet to Mid-Infrared,” Adv. Opt. Mat 10, 20230013, https://doi.org/10.1002/adom.202300137 (2023).
#meaturefaces;

[5] R. Sokhoyan , P. Thureja, J. Sisler, M. Grajower, K. Shayegan, E. Feigenbaum, S. Elhadj, and H. A. Atwater, “Electrically tunable conducting oxide metasurfaces for high power applications,” Nanophotonics, vol. 12, no. 2, pp. 239-253 (2023).
#laser induced damage; #metasurfaces; #nano-photnics; #optical modeling

[6] C. J. Stolz, E. Feigenbaum, “Temporal and spatial laser intensification within nodular defects overcoated with multilayer dielectric mirrors over a wide range of defect geometries,” Applied Optics Vol. 62, Issue 7, pp. B25-B34 (2023).
#laser induced damage; #optical modeling

[7] J.-H. Yoo, N. J. Ray, M. Johnson H. T. Nguyen, E. Feigenbaum, “Laser-Assisted Tailored Patterning of Au Nanoparticles over Inch-Sized Area: Implications for Large Aperture Meta-Optics,” ACS Applied Nano Materials 5, 10073–10080 (2022).
#meaturefaces;

*[8] N. J. Ray, J.-H. Yoo, H. T. Nguyen, E. Feigenbaum, “Designer Metasurfaces for Antireflective Applications Enabled by Advanced Nanoparticle Technology,” Adv. Opt. Mat 10, 2270037, https://doi.org/10.1002/adom.202200151 (2022).
Cover story. #meaturefaces;

*[9] I Bass, J Vickers, G Guss, M Norton, D Cross, CW Carr, E Feigenbaum, “Fused silica optics damage from downstream intensification on laser-induced damage precursors,” Applied Optics 60, 11084-11093 (2021).
#laser induced damage; #optical modeling

[10] V. Peters, S. R. Qiu, C. Harthcock, R. Negres, G. Guss, T. Voisin, E. Feigenbaum, C. Stolz, D. Vipin, M. Huang, “Investigation of UV, ns-laser damage resistance of hafnia films produced by electron beam evaporation and ion beam sputtering deposition methods,” J. Appl. Phys. JAP21-AR-01532R (2021).
#laser induced damage;

[11] C. J. Stolz, A. Sytchkova, P. Doerner, P. Kupinski, E. Feigenbaum, N. Teslich, M. Menor, J. Adams, ” High laser fluence ITO coatings utilizing a Fabry-Perot thin film filter to reduce effective absorption,” Opt. Express 29, 24032-24044 (2021).
#laser induced damage; #optical modeling

[12] N. J. Ray, J. -H. Yoo, H. T. Nguyen, E. Feigenbaum, “Large Aperture and Durable Glass-Engraved Optical Metasurfaces Using Nanoparticle Etching Masks: Prospects and Future Directions,” J. Phys. Photonics 3 032004 (2021).
Invited Review in a special focus issue on metasurfaces. #meaturefaces;

[13] T. U. Tumkur, R. Sokhoyan, M. P. Su, A. Ceballos-Sanchez, G. Kafaie Shirmanesh, Y. Kim, H. A. Atwater, E. Feigenbaum, and S. Elhadj, “Toward high laser power beam manipulation with nanophotonic materials: evaluating thin film damage performance,” Opt. Express 29, 7261-7275 (2021).
#laser induced damage; #metasurfaces; #nano-photnics; #optical modeling

*[14] N. J. Ray, J. -H. Yoo, S. Baxamusa, H. T. Nguyen, S. Elhadj, E. Feigenbaum, “Tuning Gold Nanoparticle Size with Fixed Interparticle Spacing in Large-Scale Arrays: Implications for Plasmonics and Nanoparticle Etching Masks,” ACS Appl. Nano Mater. 4, 2733–2742 (2021).
#meaturefaces; #nano-photonics;

[15] E. Feigenbaum, N. J. Ray, J.-H. Yoo, H. T. Nguyen, S. Elhadj, ” Coupling buried etalon layers to an engraved metasurface for durable and large-aperture meta-optics,” Appl. Opt. 59, 8136-8146 (2020).
#meaturefaces; #optical modeling;

[16] T. A. Laurence, D. A. Alessi, E. Feigenbaum, R. A. Negres, S. R. Qiu, C. W. Siders, T. M. Spinka, C. J. Stolz, “Mirrors for petawatt lasers: Design principles, limitations, and solutions,” J. Appl. Physics 128, 071101 (2020).
#laser induced damage; #optical modeling

*[17] N. J. Ray, J. H. Yoo, H. T. Nguyen, M. A. Johnson, S. Elhadj, S. H. Baxamusa, and E. Feigenbaum, “Substrate-engraved antireflective nanostructured surfaces for high-power laser applications,” Optica 7, 518-526 (2020).
#meaturefaces; #laser induced damage;

[18] C. J. Stolz, E. Feigenbaum, “Impact of high refractive coating material on the nodular-induced electric field enhancement for near infrared multilayer mirrors,” Appl. Opt. 59, A20-A25 (2020).
#laser induced damage; #optical modeling;

[19] E. Feigenbaum, J. D. Bude, J-M. G. Di Nicola, C. Widmayer, “Revisiting an airgap split-optics mitigation for beam filamentations in high power lasers,” Opt. express 27, 32764-32778 (2019).
#laser induced damage; #optical modeling;

[20] E. Feigenbaum, N. J. Ray, J. H. Yoo, “Optical modeling of random anti-reflective meta-surfaces for laser systems applications,” Appl. Opt. 58, 7558-7565 (2019).
#meaturefaces; #optical modeling;

[21] N. J. Ray, J. H. Yoo, J. T. McKeown, S. Elhadj, S. H. Baxamusa, M. A. Johnson, H. T. Nguyen, R. Steele, J. M. Chesser, M. J. Matthews, and E. Feigenbaum, “Enhanced Tunability of Gold Nanoparticle Size, Spacing, and Shape for Large-Scale Plasmonic Arrays,” ACS Appl. Nano Mater. 2 4395-4401 (2019).
#meaturefaces; #nano-photnics;

*[22] J. H. Yoo, H. T. Nguyen, N. J. Ray, M. A. Johnson, R. Steele, J. Chesser, S. H. Baxamusa, S. Elhadj, J. T. McKeown, M. J. Matthews, and E. Feigenbaum, “Scalable light-printing of substrate-engraved free-form meta-surfaces,” ACS Appl. Mater. Interfaces 11, 22684-22691 (2019).
#meaturefaces;

*[23] E. Feigenbaum, J-M. G. Di Nicola, J. D. Bude, “Revisiting beam filamentation formation conditions in high power lasers,” Opt. Express 27, 10611-10630 (2019).
#laser induced damage; #optical modeling;

[24] A. K. Jhaa, C. Lia, K. P. Pipe, M. T. Crowleyb, D. Fullagerb, J. D. Helmrichb, P. Thiagarajanb, R. J. Deric, E. Feigenbaum, R. B. Swertfegerc, P. O. Leisher, “Thermoreflectance imaging of back-irradiance heating in high power diode lasers at several operating wavelengths,” IEEE J. Select. Top. Quant. Electron., vol. 25, no. 6, pp. 1-13 (2019).
#diode lasers; #optical modeling

[25] T. Suratwala, R. Steele, L. Wong, P. Miller, E. Feigenbaum, N. Shen, N. Ray, M. Feit, “Towards predicting removal rate and surface roughness during grinding of optical materials,” Appl. Opt. 58, 2490-2499 (2019).
#mechanical finishing

[26] T. Suratwala, R. Steele, P. E. Miller, L. Wong, J. F. Destino, E. Feigenbaum, N. Shen, M. Feit, “Influence of partial charge on the material removal rate during chemical polishing,” J. Am. Cer. Soc. 102, 1566-1578 (2019).
#mechanical finishing

[27] T. A. Laurence, R. A. Negres, E. Feigenbaum, N. Shen, S. Ly, D. Alessi, J. D Bude, C. W. Carr, “Laser-induced modifications of HfO2 coatings using picosecond pulses at 1053 nm: Using polarization to isolate surface defects,” J. Appl. Phys. 124, 083102 (2018).
#laser induced damage; #optical modeling

[28] N. Shen, E. Feigenbaum, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, “Nanoplastic removal function and the mechanical nature of colloidal silica slurry polishing,” J. Am. Ceram. Soc. 2018;00:1–11. https://doi.org/10.1111/jace.16161. (2018).
#mechanical finishing

[29] J. Han, M. Freyman, E. Feigenbaum, T. Han, “Electro-optical device with tunable transparency using colloidal core/shell nanoparticles,” ACS Photonics 5, 1343–1350 (2018).
#nanophotonics; #optical modeling

[30] J. J. Diaz Leon, E. Feigenbaum, N. P. Kobayashi, T. Yong-Jin Han, A. M. Hiszpanski, “Design Parameters for Subwavelength Transparent Conductive Nanolattices,” ACS Appl. Mater. Interfaces 9, 35360–35367 (2017).
#metasurfaces; #optical modeling

[31] E. Feigenbaum, A. M. Hiszpanski, “Phase accumulation tracking algorithm for effective index retrieval of fishnet metamaterials and other resonant guided wave networks,” J. Opt. 19, 075103 (2017).
#metasurfaces; #optical modeling

*[32] E. Feigenbaum, T. A. Laurence, “Filament damage formation in fused silica glass as a result of 1-50 picosecond near infrared laser pulses”, Appl. Opt. 56, 3666-3672 (2017).
#laser induced damage; #beam propagation; #optical modeling

[33] E. Feigenbaum, O. Malik, A. M. Rubenchik, M. J. Matthews, “Interference effects in laser-induced plasma emission from surface-bound metal micro-particles,” Opt. Express 25, 9778-9792 (2017).
#beam propagation; #optical modeling

[34] R. Learn, E. Feigenbaum, “Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width,” Appl. Opt. 55, 4402-4407 (2016).
#beam propagation; #optical modeling

[35] E. Feigenbaum, R. N. Raman, D. Cross,  C. W. Carr, M. J. Matthews, “Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface,” Optics Express 24, 10527-10536 (2016).
#laser induced damage; #optical modeling

[36] R.N. Raman, S.G. Demos, N. Shen, E. Feigenbaum, R.A. Negres, S. Elhadj, A.M. Rubenchik, M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634-2647 (2016).
#laser induced damage;

[37] M.L. Spaeth, et.al, “Description of the NIF Laser, “Fusion Science and Technology," 69, 25-145 (2016).
#NIF laser

[38] K.R. Manes, et.al, “Damage Mechanisms Avoided or Managed for NIF Large Optics,“ Fusion Science and Technology 69, 146-249 (2016).
#NIF laser

[39] E. Feigenbaum, N. Nielsen, M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54, 8554-8560 (2015).
#laser induced damage; #optical modeling

[40] E. Feigenbaum, S. Elhadj, M.J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23, 10589-10597 (2015).
#laser induced damage; #optical modeling

[41] S.P. Burgos, H.W. Lee, E. Feigenbaum, R.M. Briggs, H.A. Atwater, “Synthesis and Characterization of Plasmonic Resonant Guided Wave Networks,” Nano Lett. 14, 3284–3292 (2014).
#nano-photonics

[42] E. Feigenbaum, R.A. Sacks, K. McCandless, B.J. MacGowan, “Algorithm for Fourier propagation through the near-focal region,” Appl. Opt. 52, 5030-5035 (2013).
#beam propagation; #optical modeling

[43] E. Feigenbaum, H.A. Atwater, “Dielectric Resonant Guided Wave Networks,” Opt. Express 20, 10674-10683 (2012).
#nano-photonics; #optical modeling

[44] E. Feigenbaum, S.P. Burgos, and H.A. Atwater, “Resonant guided wave networks”, invited book chapter in “Photonic Crystals - Introduction, Applications and Theory,” A. Massaro (Ed.), ISBN: 978-953-51-0431-5. (InTech, 2012).
#metasurfaces; #nano-photonics; #optical modeling

[45] E. Feigenbaum, S.P. Burgos, H.A. Atwater, “Tuning wave dispersion in resonant networks,” Optics and Photonics News, December 2010, 23 (2010).
(cover story on our work) #nano-photonics;

[46] E. Feigenbaum, S.P. Burgos, H.A. Atwater, “Programming of Inhomogeneous Resonant Guided Wave Networks,” Opt. Express 18, 25584-25595 (2010).
#nano-photonics; #optical modeling

[47] E. Feigenbaum, K. Diest, H.A. Atwater, “Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies,” Nano Lett. 10, 2111-2116 (2010).
#nano-photonics; #nonlinear optics;

*[48] E. Feigenbaum, H.A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010).
#nano-photonics; #optical modeling

[49] R.M. Briggs, J. Grandidier, S.P. Burgos, E. Feigenbaum, H.A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10, 4851 (2010).
#nano-photonics; #nonlinear optics; #optical modeling

[50] G. Rosenblatt, E. Feigenbaum, M. Orenstein, “Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons,” Opt. Express 18, 25861-25872 (2010).
#nano-photonics; #optical modeling

[51] E. Feigenbaum, N. Kaminski, M. Orenstein, “Negative dispersion: a backward wave or fast light?  Nanoplasmonic examples,” Opt. Express 17, 18934-18939 (2009).
#nano-photonics; #optical modeling

[52] E. Feigenbaum, M. Orenstein, "Backward propagating slow light in inverted plasmonic taper," Opt. Express 17 ,2465-2468 (2009).
#nano-photonics; #optical modeling

*[53] E. Feigenbaum and M. Orenstein, "Ultrasmall Volume Plasmons, yet with Complete Retardation Effects," Phys. Rev. Lett. 101, 163902 (2008).
#nano-photonics; #optical modeling

[54] E. Feigenbaum and M. Orenstein, "Perfect 4-way splitting in nano plasmonic X-junctions," Opt. Express 15, 17948-17953 (2007).
#nano-photonics; #optical modeling

*[55] E. Feigenbaum, M. Orenstein, "Modeling of Complementary (Void) Plasmon Waveguiding," J. Lightwave Tech. 25, 2547-2562 (2007).
(invited review on the topic) #nano-photonics; #optical modeling

[56] E. Feigenbaum, M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607-2612 (2007).
#nano-photonics; #optical modeling

*[57] E. Feigenbaum, M. Orenstein, "Plasmon-Soliton," Opt. Lett., 32, 674-676 (2007).
#nano-photonics; #nonlinear optics; #optical modeling

[58] E. Feigenbaum, M. Orenstein, "Nano plasmon polariton modes of a wedge cross section metal waveguide," Opt. Express 14, 8779-8784 (2006).
#nano-photonics; #optical modeling

[59] E. Feigenbaum, M. Orenstein, J. Scheuer, “Circulating spatial solitons,” Opt. Lett. 31, 486-488 (2006).
#nonlinear optics; #optical modeling

[60] E. Feigenbaum, M. Orenstein, “Coherent interaction of colored solitons: a perturbation description,” J. Opt. Soc. Am. B 22, 1414-1423 (2005).
a special issue on spatial optical solitons; #nonlinear optics; #optical modeling

[61] E. Feigenbaum, M. Orenstein, “Enhanced mutual capture of colored solitons by matched modulator,” Opt. Express 12, 3759-3764 (2004).
#nonlinear optics; #optical modeling

[62] E. Feigenbaum, M. Orenstein, “Colored solitons interaction: particle-like and beyond,” Opt. Express 12, 2193-2206 (2004).
#nano-phonics