Dave Erskine

Portrait of  Dave Erskine

  • Title
    Physicist
  • Email
    erskine1@llnl.gov
  • Phone
    (925) 422-9545
  • Organization
    Not Available

Background

David Erskine joined LLNL in 1987 and is a(n):

  • Experimental physicist and expert in optical diagnostics for shock physics experiments, especially using VISAR velocity interferometry and high speed recording techniques.
  • Expert in interferometric data analysis algorithms, heterodyning, and Fourier analysis.
  • Holder of six US patents on broad band interferometric technology.
  • Inventor and developer of novel broadband interferometric techniques that use incoherent light in ways normally reserved for coherent light, including white light interferometry and externally dispersed interferometry for the Doppler planet search.
  • Leader of a LLNL-University collaboration to use broadband interferometry in astronomy to detect exoplanets and boost the spectral resolving power of observatory and spaceborne spectrographs.
  • Winner of RD100 Innovation award in 2006.
  • Hiker and nature lover, and an avid composer of piano music. He has performed regularly with the Contra Costa Performing Arts Society in their free quarterly recitals.

Other notable achievements:

  1. Graduate work at Cornell University, 1979–84: Using a femtosecond laser, measured the relaxation time of electrons and holes in semiconductors.
  2. Post doctoral work at Univ. of California, Berkeley, 1984–86: Using a diamond anvil cell, compressed Silicon to high pressure at cryogenic temperatures while measuring its electrical conductivity. Demonstrated a new superconducting crystalline phase.
  3. LLNL: Demonstrated the shockwave production of crystalline hexagonal diamond from graphite. Measured the equation of state of sapphire to megabar pressures. Conducted experiments at NTS and Site 300.
  4. Demonstrated 2-dimensional velocity interferometry using incoherent light and a double interferometer. This success led other LLNL researchers to use the same double interferometer arrangement to implement a 2-d VISAR (velocity interferometer system) using short pulse laser illumination to image shock physics experiments on Omega, Janus, and (soon to be) NIF facilities. This produce for the first time velocity maps (2-d instead of 1-d), exceptionally useful for studying growth of material fractures and measuring shock wavefront instabilities important to implosion capsule physics.
  5. Invented a new method (EDI or externally dispersed interferometry) for measuring Doppler shifts of broadband light (such as starlight) by combining an interferometer with a grating or prism spectrograph in series. Demonstrated the method by measuring the 12 m/s monthly periodic tugging of the moon on the Earth using sunlight, and conducted further demonstrations on starlight at Lick and Mt. Palomar Observatories. Exoplanets around stars HD102195 and HD87646 were discovered in 2005 and 2016 by Erskine's former LDRD postdoc using this technique after leaving LLNL.
  6. Demonstrated in observatory tests on starlight that the EDI technique has the ability to boost the effective spectral resolution of an existing facility spectrograph by a factor of 2x to 10x or more, by using Fourier processing on the data (the same used to measure Doppler velocities). The periodic comb generated by the EDI interferometer also can also dramatically stabilize the spectrograph from wavelength drifts due to thermal, mechanical, or barometric changes.
  7. Innovated several useful algorithms for analyzing (VISAR) velocity interferometer data from Omega and NIF shockwave facilities, removing confusing artifacts (ghosts) due to target window reflections, and forward modeling the effect of interferometer delay and streak camera blur on high speed behavior at shock events (fixing "fringe skips").

(PhD work at Cornell U.) Semiconductor and short laser pulse physics

"Femtosecond Relaxation of Photoexcited Nonequilibrium Carriers in Al(x)Ga(1-x)As”, C.L. Tang and D.J. Erskine, Phys. Rev. Lett. 51, 840-843 (1983). (https://doi.org/10.1103/PhysRevLett.51.840)

"Femtosecond Studies of Intraband Relaxation in GaAs, AlGaAs, and GaAs/AlGaAs Multiple Quantum Well Structures", D.J. Erskine, A.J. Taylor and C.L. Tang, Appl. Phys. Lett. 45, 54-56 (1984). (https://doi.org/10.1063/1.94984)

"Femtosecond Study of the Recovery Dynamics of Malachite Green in Solution", D.J. Erskine, A.J. Taylor, and C.L. Tang., J. Chem. Phys. 80, 5338-5339 (1984). (https://doi.org/10.1063/1.446566)

"Dynamic Burstein-Moss shift in GaAs and GaAs/AlGaAs Multiple Quantum Well Structures", D.J. Erskine, A.J. Taylor, and C.L. Tang., Applied Physics Letters 45, 1209-1211 (1984). (https://doi.org/10.1063/1.95100)

(Post-doc work at UC Berkeley) High pressure diamond anvil cell physics:

"Dependence of Superconducting Transition Temperature on Pressure in the Primitive Hexagonal Phase of Si", D.J. Erskine and P.Y. Yu, Phys. Rev. Lett. 56, 2770-2770 (1986). (https://doi.org/10.1103/PhysRevLett.56.2770)

"Superconductivity and Phase Transitions in Compressed Si to 45 GPa", D.J. Erskine, P.Y. Yu, K.J. Chang, and M. Cohen., Phys. Rev. Lett. 57, 2741-2744 (1986). (https://doi.org/10.1103/PhysRevLett.57.2741)

"A Technique for High Pressure Electrical Conductivity Measurement in Diamond Anvil Cells at Cryogenic Temperatures", D.J. Erskine, P.Y. Yu, and G. Martinez, Rev. Sci. Instr., 58, 406-411 (1987). (https://doi.org/10.1063/1.1139296)

Shock physics at gas gun

"Shock-Induced Martensitic Phase Transformation of Oriented Graphite to Diamond", D.J. Erskine and W.J. Nellis, Nature 349, 317-319 (1991).(https://doi.org/10.1038/349317a0)

High Pressure Hugoniot of Sapphire”, D.J. Erskine, High-Pressure Science and Technology-1993, (Color. Sprs., CO, June 28- July 2, 1993), AIP Conf. Proc. 309, pp. 141-143 (1993). (https://doi.org/10.1063/1.46499)

Shock Wave-profile Study of Tuff from the Nevada Test Site”, D.J. Erskine and W.J. Nellis, J. Geophys. Res. 99, 15, 529-537 (1994). (https://doi.org/10.1029/94JB00726)

Interferometric diagnostic techniques for shock physics

"White Light Velocimetry", D.J. Erskine and N.C. Holmes, Nature 377, 317-320 (1995). (https://doi.org/10.1038/377317a0)

US Patent 5,642,194 "White Light Velocity Interferometer", D.J. Erskine, filed Feb 5, 1996, issued June 24, 1997, (IL-9745).(http://spectralfringe.org/EDI/MyPubs/US5642194.pdf)

Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis”, D. Erskine, R. Smith, C. Bolme, P. Celliers, and G. Collins, Rev. Sci. Instr. 83, 043116 (2012). (https://doi.org/10.1063/1.4704840)

Holographic & Time-resolving Ability of Pulse-pair Two-dimensional Velocity Interferometry”, D.J. Erskine, R.F. Smith, C.A. Bolme, S. Ali, P.M. Celliers, and G.W. Collins, Rev. Sci. Instr. 85, No. 6, 063115 (June 26, 2014). (https://doi.org/10.1063/1.4884880)

Ghost fringe removal techniques using Lissajous data presentation”, D. J. Erskine, Jon Eggert, Peter Celliers, and Damien Hicks, Rev. Sci. Instrum. 87(3), 033106 (2016), online Mar 14, 2016. (https://doi.org/10.1063/1.4943563)

Forward modeling of Doppler velocity interferometer for improved shockwave measurements”, David Erskine, Rev. Sci. Instr. 91, No. 4, 043103 (2020). (https://doi.org/10.1063/1.5143246)

VISAR (velocity interferometer) data analysis for equation of state experiments at Janus, Omega and NIF facilities

"Heterogeneous Flow and Brittle Failure in Shock-compressed Silicon", R.F. Smith, C.A. Bolme, D.J. Erskine, P.M. Celliers, S. Ali, J.H. Eggert, S.L. Brygoo, B.D. Hammel, J. Wang, G.W. Collins, J. Appl. Phys. 114, 133504 (2013). (https://doi.org/10.1063/1.4820927)

Shock equation of state of $^6$LiH to 1.1 TPa”, A. Lazicki, R. London, F. Coppari, D. Erskine, H. Whitley, K. Caspersen, D. Fratanduono, M. Morales, P. Celliers, J. Eggert, M. Millot, D. Swift, G. Collins, S. Kucheyev, J. Castor, and J. Nilsen, Phys. Rev. B, 96:134101, (2017). (https://doi.org/10.1103/PhysRevB.96.134101)

Theoretical and experimental investigation of the equation of state of boron plasmas”, Shuai Zhang, Burkhard Militzer, M. C. Gregor, Kyle Caspersen, Lin Yang, Tadashi Ogitsu, Damian Swift, Amy Lazicki, David J. Erskine, Richard A. London, D. E. Fratanduono, P. Celliers, F. Coppari, J. Eggert, J. Nilsen, Philip A. Sterne, and Heather D. Whitley, Phys. Rev. E. 98:023205, Aug 2018. (https://doi.org/10.1103/PhysRevE.98.023205)

Equation of state of boron nitride combining computation, modeling, and experiment”, Shuai Zhang, A. Lazicki, B. Militzer, L. H. Yang, K. Caspersen, J. Gaffney, M. W. Daene, J. E. Pask, W. R. Johnson, A. Sharma, P. Suryanarayana, D. Johnson, A. Smirnov, P. A. Sterne, D. Erskine, R. A. London, F. Coppari, D. Swift, J. Nilsen, Art J. Nelson, and H. D. Whitley, Phys. Rev. B. 99, 165103 (2019). (https://doi.org/10.1103/PhysRevB.99.165103)

Developing Quartz and Molybdenum as Impedance-Match Standards in the 100-Mbar regime”, M. C. Marshall, A. E. Lazicki, D. Erskine, R. A. London, D. E. Fratanduono, P. M. Celliers, J. H. Eggert, F. Coppari,D. C. Swift, P. A. Sterne, H. D. Whitley, and J. Nilsen, Phys. Rev. B 99, 174101 (2019). (https://doi.org/10.1103/PhysRevB.99.174101)

Shock compression of liquid deuterium up to 1 TPa”, A. Fernandez-Pañella, M. Millot, D. E. Fratanduono, M. Desjarlais, S. Hamel, M.C. Marshall, D. J. Erskine, P. A. Sterne, S. Haan, T. R. Boehly, G. W. Collins, J. H. Eggert and P. M. Celliers, Phys. Rev. Lett. 122, 255702 (2019). (https://doi.org/10.1103/PhysRevLett.122.255702)

Shock Hugoniot measurements of single-crystal 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) compressed to 83 GPa”, M. C. Marshall A. Fernandez-Panella, T. Myers, J. H. Eggert, D. Erskine, S. Bastea, L. Fried, and L. D. Leininger, J. Appl. Phys. 127(18):185901, 2020. (https://doi.org/10.1063/5.0005818)

Astrophysical instrumentation for the Doppler planet search and high resolution spectroscopy

"Novel Interferometer Spectrometer for Sensitive Stellar Radial Velocimetry", D.J. Erskine and J. Ge, in "Imaging the Universe in Three Dimensions", Walnut Creek, CA, Mar. 29-Apr. 1, 1999, Ast. Soc. Pacific Conf. Series 195, 501-507 (2000). (http://digital.library.unt.edu/ark:/67531/metadc780974/)

US Patent 6,351,307 "Combined dispersive/interference spectroscopy for producing a vector spectrum", D.J. Erskine, filed Feb 23, 2000, issued Feb. 26, 2002, (IL-10168). (http://spectralfringe.org/EDI/MyPubs/US6351307.pdf)

"An Externally Dispersed Interferometer Prototype for Sensitive Radial Velocimetry: Theory and Demonstration on Sunlight", D.J. Erskine, Publ. Astron. Soc. Pacific 115, 255-269 (2003). (https://doi.org/10.1086/345995)

"High Resolution Broadband Spectroscopy using an Externally Dispersed Interferometer", D.J. Erskine, J. Edelstein, M. Feuerstein and B. Welsh, ApJ., 592, L103-L106 (2003). (https://doi.org/10.1086/377703)

"Precise Stellar Radial Velocities of an M Dwarf with a Michelson Interferometer and a Medium-resolution Near-infrared Spectrograph", Philip S. Muirhead, Jerry Edelstein, David J. Erskine, J. T. Wright, M. W. Muterspaugh, K. R. Covey, E. Wishnow, K. Hamren, P. Andelson, D. Kimber, T. Mercer, S. Halverson, A. Vanderburg, D. Mondo, A. Czeszumska and J. P. Lloyd, Publ. Astr. Soc. Pacific 123, pp 709-724, June (2011). (https://doi.org/10.1086/660802)

Giving Cosmic Redshift Drift a Whirl”, Alex G. Kim, Eric Linder, J. Edelstein, and D.J. Erskine, Astropart. Phys. 62, pp. 195-205 (2015). (https://doi.org/10.1016/j.astropartphys.2014.09.004)

High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results”, D.J. Erskine, J. Edelstein, E. Wishnow, M. Sirk, P.S. Muirhead, M.W. Muterspaugh, J.P. Lloyd, Y. Ishikawa, E. McDonald, W. V. Shourt, and A. M. Vanderburg, J. Astr. Tele. Instrm. Sys. 2(2), 025004 (2016). (https://doi.org/10.1117/1.JATIS.2.2.025004)

Glasses for Mr. Magoo’s Spectrograph”, David J. Erskine, Astronomy Beat newsletter, Astr. Soc. Pacific, No. 154, March 8, 2017, Linda Shore editor.(http://spectralfringe.org/EDI/MyNews/AstroBeatGen.pdf)

Enhanced Exoplanet Biosignature Detection from an Interferometer Addition to Low Resolution Spectrographs”, D. J. Erskine, P. S. Muirhead, A. M. Vanderburg, A. Szentgyorgyi, in Ground-based and Airborne Instrumentation for Astronomy VII, Austin, TX, June 10-15, 2018, Proc. SPIE vol. 10702, 107024G (6 July 2018). (https://doi.org/10.1117/12.2303586)

Direct Acceleration: Cosmic and Exoplanet Synergies”, David J. Erskine, Eric V. Linder, Alex Kim, and 10 endorsing coauthors, white paper, Astro2020 Decadal Survey on Astr. and Astrophys., Nat. Acad. Sciences, arXiv:1903.05656, Bull. Am. Astr. Soc. 51 (3):53 May (2019). (https://arxiv.org/abs/1903.05656v1)

A 1000x Stabler Spectrograph using an Interferometer with Crossfaded Delays”, David J. Erskine and Eric V. Linder, Opt. Soc. Am. Optical Sensors and Sensing Congress 2019, Fourier Transform Spectroscopy Topical Mtg., San Jose, CA, June 25-27, 2019, paper FW5b.3.(https://doi.org/10.1364/fts.2019.fw5b.3)

(Invited) Chapter: “Dispersed Interferometers” in Book: “The WSPC Handbook of Astronomical Instrumentation”, David J. Erskine, World Scientific Publishing Company, February 2021, Singapore, Editors: David N. Burrows Ed. in chief, Anna M. Moore and Suzanne Ramsay Vol. Eds., Vol. 3, UV, Optical & IR Instrumentation: Part 2, doi: 10.1142/9446, ISBN: 978-981-4644-31-0. (https://doi.org/10.1142/9446)