Anders Petersson

(he/him)

Portrait of  Anders Petersson
  • Title
    Computational Mathematician
  • Email
    petersson1@llnl.gov
  • Phone
    (925) 424-3804
  • Organization
    COMP-CASC DIV-CENTER FOR APPLIED SCIENTIFIC COMPUTING DIVISION

Anders Petersson is a computational mathematician in the Center for Applied Scientific Computing @ LLNL, where he currently leads projects on Quantum optimal control and characterization. Anders' research lies at the cross-section of numerical methods for wave propagation, high performance computing, optimization and optimal control. His research is performed in close collaboration with physicists specializing in quantum information sciences. Anders previously lead the development of the exa-scale computing code SW4 for large scale seismic wave propagation, under the Serpentine Wave Propagation Project.

Ph.D., Numerical Analysis, KTH Royal Inst. Tech., Stockholm, Sweden

M.Sc., Aeronautics and Applied Mechanics, KTH Royal Inst. Tech., Stockholm, Sweden

  1. N. Anders Petersson, Stefanie Günther and Seung Whan Chung, “A time-parallel multiple-shooting method for large-scale quantum optimal control”, J. Comput. Phys. (submitted July 24, 2024), LLNL-JRNL-866412, arXiv 2407.13950.
  2. D. McCallen, A. Pitarka, H. Tang, R. Pankajakshan, N.A. Petersson, M. Miah, and J. Huang, “Regional-scale fault-to-structure earthquake simulations with the EQSIM framework: Workflow maturation and computational performance on GPU-accelerated exascale platforms. Earthquake Spectra. 2024, 40(3). doi:10.1177/87552930241246235
  3. D. McCallen, A. Pitarka, H. Tang, R. Pankajakshan, N. A. Petersson and M. Miah, "Transformational Regional-Scale Earthquake Simulations with the DOE EarthQuake SIMulation (EQSIM) Exascale Framework," Computing in Science & Engineering, (2024) pp.1-12. doi: 10.1109/MCSE.2024.3397768.
  4. Stefanie Günther and N. Anders Petersson, “A Practical Approach to Determine Minimal Quantum Gate Durations Using Amplitude-Bounded Quantum Controls”, (2023) AVS Quantum Sci. 5, 043802, doi: 10.1116/5.0173373.
  5. Mohammad Motamed and N. Anders Petersson, “Gaussian Process-based Bayesian Quantum Characterization”, (2023) Physics Review A (submitted 8/23/2023) LLNL-JRNL-853217, arXiv 2308.12552.
  6. L.A. Martinez, Z. Peng, D. Appelö, D.M. Tennant, N. Anders Petersson, J. L DuBois, Y. J. Rosen, “Noise-specific beats in the higher-level Ramsey curves of a transmon qubit”, Appl. Phys. Lett. 122, 114002 (2023), DOI: 10.1063/5.0138811.
  7. N. Anders Petersson and Fortino M. Garcia “Optimal Control of Closed Quantum Systems via B-splines with Carrier Waves”, SIAM J. Sci. Comput. (2022) 44(6): A3592-A3616, doi: 10.1137/21M1429618.
  8. Ryan V. Vogt, and N. Anders Petersson “Binary Optimal Control of Single-Flux-Quantum Pulse Sequences”, SIAM J. Ctrl. Opt. (2022) 60(6): 3217-3236, doi: 10.1137/21M142808X.
  9. Stefanie Günther, N. Anders Petersson and Jonathan L. DuBois, "Quandary: An open-source C++ package for high-performance optimal control of open quantum systems," 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS) (2021), pp. 88-98, doi: 10.1109/QCS54837.2021.00014, arXiv:2110.10310.
  10. Stefanie Günther, N. Anders Petersson and Jonathan L. Dubois, “Quantum Optimal Control for Pure-State Preparation Using One Initial State”, AVS Quantum Sci. (2021) 3: 043801 DOI: 10.1116/5.0060262.
  11. David McCallen, Houjun Tang, Suiwen Wu, Eric Eckert, Junfei Huang, and N. Anders Petersson, “Coupling of regional geophysical and local soil-structure models in the EQSIM fault-to-structure earthquake simulation framework”, Int. J. HPC Comput. Applic. (2022) 36: 78-92. DOI: 10.1177/10943420211019118.
  12. Houjun Tang, Suren Byna, N. Anders Petersson, David McCallen, “Tuning parallel data compression and I/O for large-scale earthquake simulation”, (2021) IEEE International Conference on Big Data (Big Data), 2992-2997.
  13. Lu Zhang, Siyang Wang, and N. Anders Petersson, “Elastic Wave Propagation in Curvilinear Coordinates with Mesh Refinement Interfaces by a Fourth Order Finite Difference Method”, SIAM J. Sci. Comp. (2021) 43(2) pp. A1472-A1496.
  14. David McCallen, Anders Petersson, Arthur Rodgers, Arben Pitarka, Mamun Miah, Floriana Petrone, Bjorn Sjogreen, Norman Abrahamson, and Houjun Tang, “EQSIM - A Multidisciplinary Framework for Fault-to-Structure Earthquake Simulations on Exascale Computers Part I: Computational Models and Workflow”, Eartquake Spectra (2021) 37(2) pp. 707-735. doi:10.1177/8755293020970982.
  15. Xian Wu, Spencer Tomarken, N. Anders Petersson, Luis A. Martinez, Yaniv J. Rosen and Jonathan L. Dubois, “High-Fidelity Software-Defined Quantum Logic on a Superconducting Qudit”, Phys. Rev. Lett. (2020) 125, 170502.
  16. Arthur J. Rodgers, Arben Pitarka, Ramesh Pankajakshan, Bjorn Sjögreen, and N. Anders Petersson, “Regional-Scale Three-Dimensional Ground Motion Simulations of MW 7 Earthquakes on the Hayward Fault, Northern California Resolving Frequencies 0-10 Hz and Including Site Response Corrections, Bull. Seismo. Soc. Amer. (2020) 110(6), 2862–2881.
  17. O. O’Reilly and N.A. Petersson, “Energy conservative SBP discretizations of the acoustic wave equation in covariant form on staggered curvilinear grids”, J. Comput. Phys. (2020) 411 pp. 1-22. doi: 10.1016/j.jcp.2020.109386.
  18. D. McCallen, N.A. Petersson, A. Rodgers, M. Miah, A. Pitarka, F. Petrone, H. Tang, “The earthquake simulation (EQSIM) framework for physics-based fault-to-structure simulations”, 17th World conference on earthquake engineering, Sept. 2020, LLNL-CONF-803869.
  19. N. Anders Petersson, Fortino M. Garcia, Austin E. Copeland, Ylva L. Rydin and Jonathan L. DuBois, “Discrete Adjoints for Accurate Numerical Optimization with Application to Quantum Control”, arXiv:2001.01013, LLNL-JRNL-800457 (2020).
  20. Wang, S. and N.A. Petersson, “Fourth order finite difference methods for the wave equation with mesh refinement interfaces”, SIAM J. Sci. Comput. (2019) 41(5), pp. A3246-A3275, arXiv:1809.04310.
  21. A. J. Rodgers, N. A. Petersson, A. Pitarka, D. B. McCallen, B. Sjogreen, and N. Abrahamson, “Broadband (0–5 Hz) Fully Deterministic 3D Ground-Motion Simulations of a Magnitude 7.0 Hayward Fault Earthquake: Comparison with Empirical Ground-Motion Models and 3D Path and Site Effects from Source Normalized Intensities”, Seismo. Res. Lett. (2019) 90(3), pp. 1268-1284, doi: 10.1785/0220180261.
  22. Petersson N.A. and B. Sjogreen, “High order accurate finite difference modeling of seismo-acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a realistic topography”, J. Sci. Comput. (2018) 74, pp. 290–323, DOI 10.1007/s10915-017-0434-7.
  23. Rodgers, A. J., A. Pitarka, N. A. Petersson, B. Sjögreen and D. B. McCallen, “Broadband (0–4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake with Three-Dimensional Structure and Topography”, Geophys. Res. Lett. (2018) 45, pp. 739–747, doi: 10.1002/2017GL076505.
  24. Johansen, H., A. Rodgers, N.A. Petersson, D. McCallen, B. Sjogreen, and M. Miah, “Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis”, Comput. Sci. Eng. (2017) 19(5), pp. 27-37.
  25. Prochnov, B., O. O’Reilly, E.M. Dunham, and N.A. Petersson, “Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid”, Comput. Fluids. (2017) 149, pp. 138–149 https://doi.org/10.1016/j.compfluid.2017.03.015.
  26. Petersson, N.A., O. O’Reilly, B. Sjogreen, and S. Bydlon, “Discretizing singular point sources in hyperbolic wave propagation problems”, J. Comput. Phys. (2016) 321, pp.532-555, http://dx.doi.org/10.1016/j.jcp.2016.05.060.
  27. Dobrev, V., Tz. Kolev, N.A. Petersson, and J. Schroder, “Two-level convergence theory for parallel time integration with multigrid”, SIAM J. Sci. Comput. 39(5) (2017), pp. S501-S527, DOI: 10.1137/16M1074096.
  28. Sjogreen, B. and N.A. Petersson, “Summation by Parts Finite Difference Approximations for Seismic and Seismo-Acoustic Computations”; in Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering 106, pp. 455-463, R.M. Kirby, M. Berzins, J.S. Hesthaven (Eds.) Springer Verlag (2015).
  29. Petersson, N.A. and B. Sjogreen, “Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method”, J. Comput. Phys. 299 (2015), pp. 820-841, http://dx.doi.org/10.1016/j.jcp.2015.07.023.
  30. Petersson, N.A. and B. Sjogreen, “Super-grid modeling of the elastic wave equation in semi-bounded domains”, Comm. Comput. Phys. 16 (2014), pp. 913-955.
  31. Sjogreen, B. and N.A. Petersson, “Source estimation by full wave form inversion”, J. Sci. Comput., 59(1) (2014), pp. 247-276, DOI: 10.1007/s10915-013-9760-6.
  32. (earlier publications are omitted)
  • AVS Quantum Science Journal awarded “Editor’s Pick” for journal publication, 2021.
  • Physical and Life Sciences directorate award “For work in computational seismology research featured in a full-dome show and exhibit at the California Academy of Sciences entitled “Earthquake”, Lawrence Livermore National Laboratory, 2012.
  • Center for Applied Scientific Computing division leader award “For excellent contribution to the new planetarium show ‘Earthquake: Life on a Dynamic Planet’ at the California Academy of Sciences”, Lawrence Livermore National Laboratory, 2012.
  • Energy and Environment directorate award “For outstanding simulation of the 1906 San Francisco earthquake
    using the new WPP code”, Lawrence Livermore National Laboratory, 2006.
  • Docent of Hydromechanics (acknowledges significant research beyond a PhD), Department of Naval Architecture and Ocean Engineering, Chalmers University of Technology, 1997.
  • Director's Funded Postdoctoral Fellowship, Los Alamos National Laboratory, 1992.
  • Honorable mention, SIAM Student Paper Competition, 1990.
  • Four-year graduate fellowship for academic excellence, Royal Institute of Technology, 1988.

Member, Society of Industrial and Applied Mathematics (SIAM).